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Outer automorphisms and spaces

The automorphism group of a group G and its normal subgroup of
conjugacy automorphisms are well-known objects. But the behaviour
of their quotient Out(G) is not as well-understood as that of the form-
ers. In [1], Culler and Vogtmann built an Outer space, a contractible
space with a proper action of Out(G), in the case where G = Fn is free
and �nitely generated. The construction is simplicial by nature, allow-
ing computations such as virtual cohomolo gical dimension (VCD).
Recently, Bregman, Charney, Stambaugh and Vogtmann generalized

the construction ([2], [3]) to the case where G is a right-angled Artin
group, hence covering a range of cases from free groups to free abelian
groups and giving bounds o n the corresponding VCDs.
I am graduating this summer and during my PhD, I'll be looking

to extend those constructions to bigger classes of countable groups,
the �rst step being to understand nice geometric generating sets for
automorphism groups.
I'm also interested in the structure of the action of Out(G) on the

conjugacy classes of G, and I would be very happy to understand well
what are the point and normal subgroup stabilizers (in special cases
for G obviously).
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Yagub Aliyev
ADA University

Geometric Group Theory? What is it?

I am not an expert in Geometric Group Theory. But I believe that
Mathematics is one unity although it is di�cult for an expert in one
branch to be easily orinented in another one. But having connections
with other directions of mathematics is always bene�cial. French math-
ematician Jacques-Salomon Hadamard once said �It is important for
him who wants to discover not to con�ne himself to one chapter of
science, but to keep in touch with various others�. I experienced this
�rsthand in a talk far from my research interests. I attended Interna-
tional Online Conference "Mathematical Physics, Dynamical Systems
and In�nite-Dimensional Analysis" -MPDSIDA 2021 and there was
a presentation about "Mach Disks and Caustic Re�ections, Caustics,
Application to Astrophysics" by I.G. Tsar'kov from Moscow State Uni-
versity [1]. Although I missed part of the talk, the part that I attended
gave me a hint about the solution of a problem that I was working on
for more than 10 years. I hope that attending this conference will have
similar e�ect for me and other participants of the conference. I wish a
great and productive conference for the organizers and the participants.
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Raphael Appenzeller
ETH Zürich (Switzerland)
PhD. Advisor: Marc Burger

Symmetric spaces and buildings over real closed �elds

Real closed �elds are ordered �elds in which every positive element
has a square-root and every polynomial of odd degree has a solution.
The algebraic and the real numbers are real closed but there are also
non-Archimedean real c losed �elds (they contain elements that are
bigger than any natural number). In real algebraic geometry (where
objects are de�ned by polynomials and inequalities), one can de�ne
geometric objects over any real closed �eld F.
For instance, the upper half-plane model of the generalized hyper-

bolic plane can be constructed as F × F>0. To de�ne a metric on the
hyperbolic plane one would normally use the logarithm, which may
not ex ist for F. Instead we use a valuation v : F>0 → R which (after
identifying points of distance zero) gives us a metric space. For the
generalized hyperbolic plane the result is an R-tr ee. The construction
can be varied and applied to more general symmetric spaces, resulting
in objects called a�ne Λ-buildings.
These metric spaces appear in the real spectrum approach to Higher

Teichmüller Theory, where surface groups act on the metric spaces with
unexpected properness-properties.
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NAME: Macarena Arenas
AFFILIATION: University of Cambridge
PHD ADVISOR: Ana Khukhro and Henry Wilton

I am mainly interested in non-positively curved cube complexes,
hyperbolic and non-positively curved groups, �niteness properties of
groups, and combinatorial properties of curves on surfaces.
My work so far concerns mainly hyperbolic groups: with my MSc su-

pervisor, Daniel T Wise, I proved that hyperbolic groups satisfy linear
generalised isoperimetric functions. In other words, that if X is a 2-
complex with torsion -free word-hyperbolic fundamental group, when-
ever a collection of combinatorial loops P1 → X, . . . Pn → X bounds
a genus g surface S → X, then P1, . . . Pn bounds a genus g surface
S ′ → X whose area is linear on

∑n
i=1 |Pi|.

Currently, I am thinking about non-positively curved cube com-
plexes, cubical small-cancellation theory, and the Rips construction.



Research Statements 5

Name: Chloe Avery
A�liation: University of Chicago
PhD Advisor: Benson Farb

Chloe Avery Research Statement

I am a fourth year PhD student at the University of Chicago, and
my advisor is Benson Farb. I primarily study stable torsion length.
For an element g of a group G, the stable torsion length is the stable
word length with respect to the generating set of all torsion elements
in G. I am also broadly interested in hyperbolic groups and polyhedral
complexes.
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Shaked Bader
Technion
PhD. Advisor: Nir Lazarovich

Geometry of A�ne Buildings

I started my masters this year with Nir Lazarovich and we are trying
to prove that two dimensional a�ne buildings are 2-median, i.e. for
any four points not colinear, the four traingles they span intersect at
a single point. This is clear in R2 and we managed to prove it for
Ã1 × Ã1.
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Sahana H. Balasubramanya
Westfälische Wilhems-Universität Münster
PhD Advisor: Denis Osin (from August 2013 to August 2018)

GROUP ACTIONS ON HYPERBOLIC SPACES

My research is focused on constructing and studying actions of groups
on hyperbolic spaces. This falls under the area of geometric group the-
ory, where it is common to study a group via the geometric properties
of a space on which the group acts. A starting point for this area came
when Gromov realized that actions on hyperbolic spaces are useful
to study algebraic, algorithmic and analytic properties of groups This
is best evidenced by his work on hyperbolic and relatively hyperbolic
groups, via the use of proper and cobounded actions.
However, there are several groups that belong to neither of these

classes; yet admit natural actions on hyperbolic spaces; examples in-
clude the mapping class groups and right angled Artin groups. Mo-
tivated by these examples, many other group actions on hyperbolic
spaces have been studied, including the so-called WPD and WWPD
actions. However, a uni�ed approach was made possible with the in-
troduction of acylindrical actions, �rst introduced by Sela for groups
acting on trees and later generalized by Bowditch.
Informally, acylindricity can be thought of as a type of properness of

the action of the group on a space S × S minus a �thick diagonal".
However, an action of a group on any bounded space is vacuously
acylindrical. Thus, additional conditions are needed to rule out such
degenerate cases when studying this action. This is the notion of a non-
elementary action, and gave rise to the class of acylindrically hyperbolic
groups, de�ned by Osin. This is a large class of groups, including many
examples, yet the theory is very rich and they share many interesting
properties with hyperbolic and relatively hyperbolic groups.
Broadly speaking, the goal of current research projects is to under-

stand all the possible cobounded actions that a given group G can
admit on some hyperbolic space, up to quasi-isometry. Alternatively,
one can think of this as classifying equivalence classes of generating
sets X of G such that the associated Cayley graph Γ(G,X) is a hyper-
bolic space. This allows us to study the group via many group actions
simultaneously, as these actions can be arranged in a partially ordered
set H(G), known as the poset of hyperbolic structures on G. I am also
particularly interested in the sub-poset AH(G), the poset of acylindri-
cally hyperbolic structures on G. i.e. equivalence classes of generating
sets X where Γ(G,X) is hyperbolic and G y Γ(G,X) is acylindrical.
In this framework, I am also interested in questions related to quasi-
parabolic actions, largest actions, and the stability of the posets under
taking quasi-isometric groups.
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Jennifer Beck
University of North Carolina Greensboro
PHD ADVISOR: Talia Fernos

Jennifer Beck

I am a graduate student at the University of North Carolina Greens-
boro. My current research interests are in geometric group theory,
especially the relationship between geometric group theory and au-
tomata theory. I am also interested in the theory of self-similar groups
and groups acting on trees.
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Oussama Bensaid
University of Paris
PhD advisor : Romain Tessera

Coarse Embeddings between Symmetric Spaces and
Euclidean Buildings

The notion of coarse embeddings was introduced by Gromov in the
80's under the name of "placements". It is a generalization of quasi-
isometric embeddings when the control functions are not necessarily
a�ne. I am particularly interest ed in coarse embeddings between
symmetric spaces and euclidean buildings. The quasi-isometric case is
very well understood thanks to the rigidity results of symmetric spaces
and buildings of higher rank by Kleiner-Leeb and Eskin-Farb in the
90s, which says in particular that the rank of these spaces is a mono-
tone invariant under quasi-isometric embeddings. This is no longer the
case for coarse embeddings as shown by horospherical embeddings for
example.
However, we can show that in the absence of a Euclidean factor in the
domain, the rank is monotonous under coarse embeddings.
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Daniel Berlyne
CUNY Graduate Center
Advisor: Jason Behrstock

Non-positive curvature in graph braid groups

Given a topological space X, one can construct the con�guration
space Cn(X) of n particles on X by taking the direct product of n
copies of X and removing the diagonal. Informally, this space tracks
the movement of the particles through X; removing the diagonal en-
sures the particles do not collide. One then obtains the unordered con-
�guration space UCn(X) by taking the quotient by the action of the
symmetric group on the coordina tes of Xn. The braid group Bn(X) is
de�ned to be the fundamental group of UCn(X).
Classically, the space X is taken to be a disc. However, one may

also study braid groups of other spaces. For example, one also ob-
tains interesting braid groups in dimension 1, namely those of graphs.
These so-called graph braid groups were �rst developed by Abrams [1],
who showed that they can be expressed as fundamental groups of non-
positively curved cube complexes. Results of Genevois show that these
cube complexes are i n fact special [2], in the sense of Haglund and
Wise. By applying Behrstock�Hagen�Sisto's result that special cube
complexes are hierarchically hyperbolic [3], it follows that Bn(Γ) is a
hierarchically hyperbo lic group.
In recent work, I construct an explicit hierarchically hyperbolic struc-

ture on a graph braid group Bn(Γ). By expressing this structure in
terms of the graph Γ, I am able to characterise when a graph braid
group exhibit s other aspects of non-positive curvature in terms of
properties of Γ. In particular, I apply tools of Behrstock�Hagen�Sisto
to classify hyperbolicity and acylindrical hyperbolicity of graph braid
groups, recovering two theore ms of Genevois [2], and I use Russell's
isolated orthogonality criterion [4] to classify relative hyperbolicity and
thickness, modulo a small conjecture.
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Federica Bertolotti
Scuola Normale Superiore
PhD. Advisor: Roberto Frigerio

Bounded cohomology of hyperbolic manifolds
�bering over S1

I am a �rst year Ph.D. student at Scuola Normale Superiore in Pisa,
where my advisor is Roberto Frigerio. I am studying bounded coho-
mology of surface and free groups through hyperbolic spaces that �ber
or �quasi-�ber� over S1.
The cohomology of a group G is the cohomology associated to the

complex Cn(G,R)G = {f : Gn+1 → Rn+1}G of G-invariant functions
from Gn+1 to R with the di�erential that you may expect. Instead of
considering the entire Cn(G,R), one can restrict the focus on the sub-
complex Cn

b (G,R) consisting of bounded cochains in Cn(G,R)G and,
so, study the bounded cohomology Hn

b (G) associated to G.
Bounded cohomology is something really mysterious. For example, it

is known about the fundamental group of an hyperbolic surface that the
bounded cohomology vanishes in degree 1, it is an in�nite-dimensional
Banach space in degree 2 [1] and in�nite dimensional (but not a Banach
space) in degree 3 [2]; however, almost nothing is known in higher
dimension.
As in the standard cohomology, one can try to approach the problem

through manifolds; for example, if M is an n-manifold �bering over S1

with �ber F , then one gets the short exact sequence

1→ π1(F )→ π1(M)→ Z→ 1

and, so, a pull-back Hn
b (π1(M)) → Hn

b (π1(F )). Using the fact that Z
is amenable, it is not di�cult to prove that this map is injective; from
this, one can hope to obtain some information about Hn

b (π1(F )) using
what it is already known about Hn

b (π1(F )).
Let me make a 3-dimensional example: let Σ be a closed hyperbolic

surface and Γ = π1(Σ) its fundamental group; consider f : Σ → Σ a
pseudo-Anosov homeomorphism; the manifold

M = Σ× [0, 1]/ ∼ (x, 0) ∼ (f(x), 1)

�ber over S1 with �ber Σ. Thanks to what I mentioned above, we
have an injection H3

b (π1(M)) → H3
b (Γ); but M is a closed hyperbolic

3-manifold, thus it has nonzero 3-dimensional bounded cohomology
[3](for example the volume form is a nontrivial element) and we can
conclude that H3

b (Γ) is nonempty.
What I am trying to do is to generalize this argument to higher

dimensions: of course there are some problem to deal with: in odd
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dimension there are no hyperbolic manifolds �bering over S1 and also
in even dimension the examples a re very few.
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Lara Beÿmann
WWU Münster
PhD. Advisor: Linus Kramer

Universal groups for right-angled buildings

I am a third year PhD-student of Linus Kramer and work in the area
of locally compact totally disconnected groups. I study automorphism
groups of right-angled buildings, in particular the universal groups in-
troduced by De Medts, Silva and Struyve in [1]. Those groups are a
generalisation of the Burger-Mozes universal groups for regular trees.
As regular trees are right-angled buildings there is natural way to gen-
eralise the concept of prescribed local actions to higher dimensions.
With slight assumptions the universal groups are totally disconnected
locally compact and compactly generated. With further assumptions
they are additionally abstractly simple. Thus they provide interest-
ing examples of compactly generated, abstractly simple, and locally
compact totally disconnected groups.
Furthermore, I am interested in automatic continuity for locally com-

pact groups. The question is: under which conditions are abstract
group homomorphisms continuous? I study this question for group ho-
momorphisms between universal groups and arbitrary locally compact
groups and search for conditions ensuring continuity.

Bibliography
[1] T. De Medts, A. C. Silva, and K. Struyve. Universal groups for

right-angled buildings. Groups, Geometry, and Dynamics, vol.
12, pp. 231-287, 2018.
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NAME: Martín Blufstein
AFFILIATION: Universidad de Buenos Aires
PHD ADVISOR: Gabriel Minian

Small Cancellation and Artin Groups

I am a PhD student at the university of Buenos Aires, and my super-
visor is Gabriel Minian. My main interests are small cancellation theory
and its applications to Artin groups. In [1] we de�ned a new small can-
cellation condition, whic h in the case of Artin groups is equivalent to
being two-dimensional. I'm also interested in systolic complexes and
their generalizations, such as Huang and Osajdas's metrically systolic
complexes or angled systolic complexes, introduc ed in [2]. Currently
I'm studying the structure of parabolic subgroups of Artin groups.

Bibliography
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Corentin Bodart
University of Geneva
PhD Advisor : Tatiana Nagnibeda

TITLE OF RESEARCH STATEMENT

I'm interested in Geometric and Combinatorial Group Theory. Cur-
rently, I'm studying groups with "nice" languages of normal forms, my
�rst results being some new examples with and without regular lan-
guages of normal forms (sometimes ca lled "rational cross-section").
Some ideas/subjects that comes up quite often are the word problem,
Bass-Serre theory, and surprisingly left-orderable groups. I hope to
apply some of those results to (rational) growth of groups, but al so on
random walks on groups. More broadly, I'm interrested in measurable
group theory and IRS's, so I'll keep an eye on those talks too.
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Oleg Bogopolski
Düsseldorf University

Exponential equations in groups

An exponential equation over a group G is an equation of the form

a1g
x1
1 a2g

x2
2 . . . ang

xn
n = 1,

where a1, g1, . . . , an, gn are elements from G and x1, . . . , xn are variables
which take values in Z. The main problems in this area are: How to
decide if an exponential equation over G has a solution? How to �nd
at least one solution if it exists? How to describe all solutions? An
information about a progress in this direction can be found in my two
recent preprints.

Bibliography
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Henry Bradford
Christ's College, University of Cambridge

Asymptotic group theory

I am a postdoctoral fellow at Cambridge University. I completed my
doctorate at Oxford in 2015, under the supervision of Marc Lackenby.
My main interest at the moment is properties of in�nite groups which
say that the group is �approximated� by �nite groups. These include
residual �niteness ; LEF and so�city. In the last decade there has
been a great deal of interest in quantitative approximation, that is:
how big must a �nite approximation F be to retain a given quantity of
information about our in�nite group Γ? This tradeo� between the order
of F and the �information content� is captured by a growth function
GΓ : N → N (so for instance there are notions of residual �niteness
growth; LEF growth; so�city growth etc.). Some natural questions
arise:

(a) How does GΓ behave for my favourite group Γ?
(b) For which functions f : N→ N does there exist a group Γ with

f ≈ GΓ?
(c) Knowing GΓ, what can we conclude about the structure of Γ?
(d) For a �xed group Γ, if we change the model of approximation

(from residually �nite to LEF, for instance), how much can GΓ

change?
Andreas Thom and I made some contributions to (a) for the residual

�niteness of free groups in [1]. I have contributed to all four themes for
LEF growth in [2,3] (the latter with Daniele Dona, using some ideas
from topological dynamics).
I also retain an interest in constructions of expander graphs [4], and

in estimating the diameters of �nite Cayley graphs [5].
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Ben Branman
University of Wisconsin � Madison
PHD ADVISOR: Autumn Kent

Big Mapping Class Groups Acting on Complexes

I study mapping class groups, geometric group theory, and geometric
topology. I am particularly interested in "Big Mapping Class Groups,"
that is, mapping class groups of surfaces with in�ninitely generated
fundamental groups. In th e study of small mapping class groups,
one fundamental object of study is the pants complex of a surface,
which is naturally quasi-isometric to the Teichmuller space with the
Weil-Petersson metric. I de�ned and studied a varia tion of the pants
complex in the setting of in�nite-type surfaces.

Bibliography
[1] B. Branman, Spaces of Pants Decompositions for Surfaces of In-

�nite Type, preprint. URL: https://arxiv.org/abs/2010.13169



20 Young Geometric Group Theory X

Adrian Cabreja
The City College of New York

I am a beginning student interested in geometric group theory. I have
spent most of my summer researching Thompson's groups, Houghton's
groups, and free groups via an internship sponsored by my university.
So far, I have found the problem of amenability most interesting.
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Caterina Campagnolo
ENS Lyon

Numerical invariants of aspherical manifolds

My research focuses on the geometry and topology of aspherical man-
ifolds. My main tools to study them are numerical invariants such as
the simplicial volume and its variants, the signature and the Euler char-
acteristic, but also homology and (bounded) cohomology of groups and
spaces.
One fascinating example is that of surface bundles over surfaces.

They form a rich family of 4-manifolds around which several questions
are still open. Most prominently, it is unknown whether a surface
bundle over a surface can carry a real hyperbolic geometry (and it is
conjectured to be impossible). This is in striking contrast with the
3-dimensional case: Agol showed that every closed oriented hyperbolic
3-manifold is �nitely covered by a surface bundle over the circle.
The study of surface bundles over surfaces touches a variety of sub-

jects and can be pursued from di�erent viewpoints: mapping class
groups and their convex cocompact subgroups, low-dimensional geom-
etry and topology, bounded cohomology and simplicial volume, sta-
ble commutator length. Basing myself on [1], I try to combine these
approaches to study the geometric representatives of the second ho-
mology group of surface bundles over surfaces. Depending on their `1

-norm, one can decide whether the ambient manifold admits a nega-
tively curved metric or not.
I am also interested in other problems, such as Gromov's famous

question:
If an aspherical closed connected oriented manifold M has vanishing

simplicial volume, does its Euler characteristic also vanish?
As a contribution to this question, we show with Diego Corro [2] that

smooth manifolds M admitting a smooth regular foliation by circles
with π1-injective leaves satisfy both ‖M‖ = 0 and χ(M) = 0.

Bibliography
[1] C. Campagnolo, A geometric description of the homology of

surface bundles, arXiv preprint 1603.07639, 2016.
[2] C. Campagnolo and D. Corro, Integral foliated simplicial volume

and circle foliations, online ready in J. Topol. Anal., 2021.
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André da Cruz Carvalho
Centre of Mathematics of University of Porto
PhD Advisor: Pedro Ventura Alves da Silva

Structure, algorithmics and dynamics of endomorphisms for
certain classes of groups

We are currently studying endomorphisms of some classes of groups
from several viewpoints. Let C be such a class and G a group in C.
From the algebraic viewpoint, we focus our work on the structure of

Aut(G) and End(G). As an example of that, we have classi�ed in [2]
the endomorphisms of Fn × Fm, proved that Aut(Fn × Fm) is �nitely
presented an d obtained conditions for Fix(ϕ) and Per(ϕ) to be �nitely
generated when G is a direct product of free groups. Also, on the
class of word hyperbolic groups, we developed geometric tools to rep-
resent the well-known bo unded cancellation lemma and, using them,
we proved that nontrivial endomorphisms that continuously extend to
the boundary are precisely the ones with �nite kernel and quasiconvex
image in [3].
In terms of algorithmic properties we are focusing on the orbits of

elements of G through the automorphisms of G, i.e., Oa = {f(a) : f ∈
Aut(G)} and the subgroup of �xed points for a given automorphism
(or endomorphism) of G. We also consider orbit problems involving
automorphisms of groups such as determining whether two elements
lie in the same automorphic orbit. Some other interesting problems
are the Whitehead problems, the twisted conjugacy problem and the
Post correspondence problem. We haven't obtained many algorithmic
results yet, with the exception of solving the Whitehead problems for
Fn×Fm in [2]. While the result was already known for endomorphisms
and automorphisms of RAAGs, it is new for monomorphisms.
For the dynamical aspects, we intend to classify the in�nite �xed

(i.e. �xed points for the continuous extension of an automorphism of
a metric group of certain type to its completion) and periodic points
for a given automorphism of G. We are also interested in studying
ω-limits and describing the sets of periodic, recurrent and wandering
points. Some of that was achieved for the class of free-abelian times
free groups in [1].
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Alberto Cassella
University of Milano - Bicocca
PHD ADVISORS: Dr. Prof. Thomas Weigel (University of Milano -
Bicocca), Dr. Prof. Conchita Martinez-Perez (University of Zaragoza)

Hypercubical groups or groups with a Salvetti complex

A very important in�nite family of in�nite groups in the realm of
Geometric group theory is that of right-angled Artin groups, which
provides numerous results and examples. RAAGs are known to act on
particular cubical complex es, whose universal covers are contractible.
Every such universal cover is called the Salvetti complex of the RAAG.
Many generalizations of RAAGs have been studied and are studied
still now, for example in the direction of pro-p RAAG s and generalized
RAAGs. In my Master's degree thesis I introduced a new generalization
of such groups, that of hypercubical groups. These are �nitely gener-
ated groups to which a particular contractible cubical complex can be a
ssociated, playing the same role the Salvetti complex plays for RAAGs.
In particular, after de�ning such class of groups, I studied some exam-
ples of hypercubical groups, namely RAAGs, oriented RAAGs (similar
to RAAGs, but de�ned star ting from an oriented �nite graph) and
the link group of the Borromean rings. At the moment, in particular
I am studying some possible generalizations of the link group of the
Borromean rings in the realm of hypercubical groups. Possi ble future
developments of my research project are the search for other examples
of hypercubical groups, the classi�cation of such groups and the study
of properties shared by the groups belonging to this family or at least
to some su bfamily of it.
I am interested in Algebra and especially in Geometric group theory,
with a particular taste for the homological approach. In my �rst year of
PhD I have attended courses about "Topics in GGT" (Prof. Francesco
Matucci), "Pro�n ite and pro-p groups" (Dr. Claudio Quadrelli) and
"Cohomology and geometry of TDLC-groups" (Dr. Ilaria Castellano).
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NAME: Gemma Crowe
AFFILIATION: Heriot-Watt University
PHD ADVISOR: Laura Ciobanu

Decision problems in groups and extensions

I am a �rst year PhD student and have started looking into decision
problems in group extensions of right-angled Artin groups. The overall
aim for my PhD is to learn more about the conjugacy problem in virtual
RAAGs. Some of my research so far has looked at ideas such as CAT(0)
groups, graph products and the twisted conjugacy problem.
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Isobel Davies
Otto-von-Guericke-Universität Magdeburg
PhD. Advisors: Petra Schwer, Linus Kramer

A uni�ed approach to Euclidean Buildings and symmetric
spaces of non-compact type

I started my PhD in January 2021 under the supervision of Petra
Schwer (OvGU Magdeburg) and Linus Kramer (WWÜ Münster). Be-
fore that I spent some time at the Max Planck Institute for Mathemat-
ics in the Sciences in Leipzig, during which I carried out research in the
�elds of algebraic statistics and toric geometry. My research interests
lie at the intersection of algebra and geometry.
My PhD project concerns the similarities between Euclidean build-

ings and symmetric spaces of non-compact type, in particular their
geometry at in�nity. One aspect of this project is to consider proper-
ties that have been shown for both objects and see if a uniform proof of
this can be constructed. An example of such a property is the existence
of a spherical building at in�nity.

Bibliography
[1] Martin R. Bridson and André Hae�iger. Metric Spaces of Non-

Positive Curvature. Springer, 1999.
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Name: Soumya Dey
A�liation: The Institute of Mathematical Sciences, Chennai, India

Research statement of Soumya Dey

Areas of my research interest are mapping class groups of surfaces of
�nite and in�nite type and the associated Teichmüller spaces, general-
ized braid groups such as welded braid groups, singular braid groups
etc, right-angl ed Coxeter groups such as twin groups.

My PhD thesis involved combinatorial computations to �nd explicit
generators and de�ning relations of commutator subgroups of various
generalized braid groups. Currently, in my postdoc, I am interested in
�nding explicit gen erating sets of liftable mapping class groups asso-
ciated with various covering maps between closed oriented surfaces. I
am also interested in some speci�c elements of some big mapping class
groups and how they act on the corresponding Fenchel-Nielsen Teich-
müller spaces.

Please visit my homepage to �nd more about me:
https://sites.google.com/site/soumyadeymathematics
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Leonardo Dinamarca
Universidad de Santiago de Chile
PHD Advisor: Andrés Navas

Distortion in di�erent regularities

We start by recalling the terminology introduced by Michail Gromov
[1]. Given a �nitely generated group Γ, we �x a �nite system of gener-
ators, and we denote ‖ · ‖ the corresponding word-length. An element
f ∈ Γ is said to be distorted if

lim
n→∞

‖fn‖
n

= 0.

(Notice that this condition does not depend on the choice of the �nite
generating system.) Given an arbitrary group G, an element f ∈ G is
said to be distorted if there exists a �nitely generated subgroup Γ ⊂ G
containing f so that f is distorted in Γ in the sense above.
Examples of �large� groups for which this notion becomes interesting

are groups of di�eomorphisms of compact manifolds M . Very little is
known about distorted elements therein. In particular, the following
question from [2] is widely open: Given r < s, does there exist an
undistorted element f ∈ Di�s+(M) that is distorted when considered
as an element of Di�r+(M) ? In [2], Andrés Navas proves that this is the
case for M the closed interval, r = 1 and s = 2. Actually, undistortion
holds in the larger group Di�1+bv

+ ([0, 1]) of C1 di�eomorphisms with
derivative of bounded variation.
We give an extension of this result from C1 to C1+α regularity.

Theorem. There exist C∞ di�eomorphisms of [0, 1] that are distorted
in Di�1+α

+ ([0, 1]) for all α > 0 yet undistorted in Di�1+bv
+ ([0, 1]).
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Sami Douba
McGill University
PhD. Advisor: Piotr Przytycki, Dmitry Jakobson

Linearity of graph manifold groups

A group Γ is said to be linear if there is a faithful representation of Γ
on some �nite-dimensional vector space. Thurston asked if any closed,
connected 3-manifold M has linear fundamental group. To answer
this question, it su�ces to consider the case where M is orientable
and irreducible. In this context, either M is geometric, in which case
π1(M) is easily seen to be linear, or M can be decomposed along tori
into geometric piec es, each of which is either hyperbolic or Seifert
�bered. If at least one of these pieces is hyperbolic, then π1(M) is
linear by work of Przytycki�Wise [4]. Otherwise, M is called a graph
manifold. In the case where such M are nonpositively curved (NPC),
linearity of π1(M) was established by Liu [3]. If there is indeed a
faithful representation ρ : π1(M) → GLn(F ) for some �eld F , where
M is a non-NPC graph manifold, then the image of ρ will contain
nontrivial unipotent matrices [2] (in particular, unlike the fundamental
groups of their NPC cousins, the fundamental group of a non-NPC
graph manifold does not embed in a compact Lie group ); in fact, for
at least some of these M , there is a nontrivial element of π1(M) that is
mapped to a virtually unipotent matrix under any �nite-dimensional
linear representation of π1(M) [1].
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NAME Karol Duda
AFFILIATION University of Wrocªaw
PHD ADVISOR Aleksander Ivanov

Geometric group theory and computability

I am interested in connections between computability theory and
algebraic/geometric properties of groups. My current projects con-
cerns e�ective aspects of amenability, the topic initiated by Matteo
Cavaleri, Adam R. Day, Tullio Cecche rini-Silberstein and some other
researchers. One of the main results of my research states that when
a group is computable, non-amenability is equivalent to e�ective para-
doxical decomposability (i.e. all members of the decomposition a re
computable). This is based on some work in e�ective graph theory. We
together with Aleksander Ivanov have found an example of a �nitely
presented group with decidable word problem where the problem if a �-
nite subset generates an amenable subgroup is undecidable. Moreover
in the case of non-amenable coarse spaces of bounded geometry, I have
found an e�ective version of Schneider theorem concerning existence of
d-regular forests.
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Rebecca Eastham
University of Wisconsin-Madison
Advisor: Autumn Kent

I'm interested in combinatorial group theory, particularly problems
involving free groups, 1-relator groups, and other groups with aspheri-
cal presentations. I'm inspired by the work of J. R. Stallings.
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Alexandra Edletzberger
University of Vienna
PhD. Advisor: Christopher H. Cashen, Privatdoz. PhD

Quasi-Isometry Problem of certain Right-Angled Coxeter
Groups

I am a �rst year PhD student under the supervision of Dr. Christo-
pher Cashen. I am interested in the Quasi-Isometry (QI) Problem of
�nitely generated groups admitting a certain splitting as a graph of
groups. Currently, I am working on the QI Problem of Right-Angled
Coxeter Groups (RACG).
In a certain hyperbolic setting, there is a QI invariant, which is "vis-

ible" from the de�ning graph of the RACG [1]. While its construction
strongly depends on the Gromov boundary of the group, the invariant
can also be obtained by using the tools of JSJ-decompositions [2]. How-
ever, those also work in a non-hyperbolic setting. Thus it seems within
reach to drop the hyperbolicity-assumption, while still producing a QI
invariant that can be "read o�" the de�ning graph.

Bibliography
[1] Pallavi Dani and Anne Thomas, Bowditch's JSJ tree and the

quasiisometry classi�cation of certain Coxeter groups, J. Topol.
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Luke Elliott
University of St Andrews
PHD ADVISOR: Dr Collin Bleak and Prof James D. Mitchell.

Luke's Research Statement

I am a third year PHD student at St Andrews. I enjoy all areas
of pure mathematics but I am particularly interested in topology and
how it connects with algebra. I have previously done work concerning
groups of homeomorphisms of the cantor space (see references [1, 2]),
as well as describing the most "natural" topologies compatible with
various semigroups (see reference [3]). A sequel to paper [3] is essen-
tially �nished and should be released on arXiv soon. I am still working
in these areas and more recently I have also been thinking about shift
spaces.
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Talia Fernós
Univsity of NC, Greensboro

I am interested in understanding in�nite groups via their actions on
geometric and analytic spaces.
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Nate Fisher
University of Wisconsin, Madison
PhD advisor: Moon Duchin (Tufts University)

Boundaries, random walks, and nilpotent groups

My research lies in the areas of metric geometry, geometric group
theory, and geometric topology. More speci�cally, my research focuses
on metric structures: the horofunction (or metric) boundary, metric
structures on the boundary itself, and the dynamics of isometries. Most
recently, I have aimed to integrate the various perspectives on nilpotent
groups, combining results about �nitely generated groups, sub-Finsler
geometries, and random walks. I also am interested in Teichmüller
geometry, mapping class groups, in�nite-type surfaces, and translation
surfaces.
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Samuel Fisher
University of Oxford
Supervisor: Dawid Kielak

Virtual �bring, �niteness properties, and `2-Betti numbers

A �bring of a manifold M over S1 is a map f : M → S1 such that
(i) preimages of points are all homeomorphic to a space F and (ii)
every point of S1 is contained in some neighbourhood U such that
f−1(U) ∼= F×U (this homeomorphism must also satisfy a compatibility
condition). Moreover, we say that M virtually �bres if M has a �nite
sheeted covering that �bres.
A �bring f induces a map f∗ : π1(M) → π1(S1) ∼= Z on funda-

mental groups, which motivates the de�nition of algebraic �bring: An
abstract group G algebraically �bres if it maps onto Z, and G virtu-
ally algebraically �bres if one of its �nite index subgroups algebraically
�bres.
Kernels of algebraic �brings are a good source of groups with inter-

esting �niteness properties, which are generalisations of �nite generat-
edness and �nite presentability of groups. For instance, we say that a
group is of type Fn if it has a classifying space with �nite n-skeleton.
There are also algebraic �niteness properties phrased in terms of reso-
lutions. I am currently interested in the �niteness properties of kernels
of virtual �brings of G, and their connections to the `2-Betti numbers
of G.
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Islam Foniqi
University of Milano - Bicocca
Ph.D. advisors: Dr. Thomas Weigel and Dr. Yago Antolín

Spherical and Geodesic growth in Combinatorial Group
Theory

The growth function of a language, over a �nite alphabet, counts the
number of words of a given length. To the growth function, one often
associates the growth series. Showing the rationality of this series is
important as it provides combinatorial insights into the language.
One de�nes the Spherical and Geodesic growth for a �nitely gener-

ated group by picking as languages, the language of elements, or the
language of geodesics respectively, with respect to some �nite generat-
ing set.
In [1] we adopted a combinatorial approach to computing the geo-

desic growth series for RACGs based on link-regular graphs without
tetrahedrons.
Another project that we are working on with Yago Antolín, is the

intersection of Parabolics in some even Artin Groups.
With Thomas Weigel, we compute the spherical and geodesic growth

series for Oriented RAAGs (a slight generalization of RAAGs, where
groups like the Klein Bottle appear), and we give a comparison to the
respective growths in RAAGs.

Bibliography
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Francesco Fournier-Facio
ETH Zürich
PhD advisor: Alessandra Iozzi

The ultrametric geometry of groups

In the past year and a half, I have been thinking about how certain
concepts in geometric and combinatorial group theory behave when
the metrics involved are ultrametric (that is, they satisfy the strong
triangle inequality). Typically this involves changing the underlying
�eld from R to a non-Archimedean valued �eld, like the one of p-adic
numbers Qp. This resulted in the two papers cited below.

In [1], I played around with the concepts of amenability and bounded
cohomology. A group G is amenable if one can average bounded real-
valued functions on it. Amenability can be characterized in terms of
the vanishing of bounded cohomology, a functional-analytic analogue
of usual group cohomology. The notion of bounded cohomology is
de�ned over any valued �eld, and I de�ned a notion of amenability
over non-Archimedean �elds which is characterized by bounded coho-
mology, analogously to the real setting. But it turns out that being
amenable over a non-Archimedean �eld is very restrictive, and that
bounded cohomology is very often isomorphic to ordinary cohomology:
both phenomena are strikingly di�erent from the real setting.

In [2], I studied ultrametric approximations of groups and their sta-
bility in the sense of Ulam. Intuitively, whether a group Γ is stable
with respect to a family of metric groups G amounts to asking: are
all almost-homomorphisms Γ→ G ∈ G close to true homomorphisms?
This has been studied a lot when G = {U(n)}n≥1 with some invariant
norm, or G = {Sn}n≥1 with the normalized Hamming distance. When
the approximating groups are taken to be ultrametric, for instance
when choosing GLn(Zp) as a non-Archimedean analogue of U(n), then
the nature of the problem becomes quite rigid, and the role of �nite
quotients is pivotal. I have managed to prove some general results and
provide a wide range of examples of stable groups, but some concrete
cases are still elusive, most notably Z2.
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Dominik Francoeur
ENS de Lyon

Groups acting on a Cantor space

Most of my work so far has been centred on the study of various
geometric and algebraic properties of certain classes of groups of home-
omorphisms of a Cantor space, mostly groups of automorphisms of in-
�nite rooted trees such as branch groups or automata groups. These
are fascinating groups that often possess properties that are very di�-
cult to �nd elsewhere, making them a good proving ground or source
of counterexamples for various conjectures.
In particular, I am very interested in questions related to the growth

of groups. Groups acting with a micro-supported action on a Cantor
space are essentially the only known source of groups of intermediate
growth, and I have been trying to better understand the growth of
such groups. To this end, I improved in [1] a criterion due to Bartholdi
and Pochon to assist in determining the growth of a group of automor-
phisms of a rooted tree, and used this criterion to �nd new examples
of groups of intermediate growth. In a di�erent direction, in a joint
work with Ivan Mitrofanov, I proved that a group generated by an
invertible and reversible Mealy automaton contains a free non-abelian
subsemigroup, and thus is of exponential growth, as soon as it contains
an element of in�nite order [2].
I am also very interested in exploring the connections between the

algebraic properties of a group of homeomorphisms of the Cantor space
and the properties of its actions. In this spirit, I have shown that if a
branch group admits a maximal subgroup of in�nite index, then this
subgroup must also be a branch group [3]. In an ongoing project, I
am trying to use this result to obtain restrictions on the degree of
transitivity of any action of a branch group on an in�nite set.
Recently, I have also become interested in questions related to the

automorphism group of the Cayley graph of a �nitely generated group.
This could lead to a better understanding of groups generated by au-
tomata, and is also related to the local-global rigidity of Cayley graphs.
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Elizaveta Frenkel

My research

I'm interested in asymptotic group theory, free groups and free con-
structions over these groups.
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Joshua Frisch
École normale supérieure

Dynamical properties of groups

My main research interests fall into the intersection of group theory
and dynamics. I'm generally interested in questions of the form What
do the (geometric, algebraic, structural) properties of the group have
to do with what kinds of (Borel, Topological, Measurable) actions the
group admits. Often this work will end up involving analyzing, or con-
structing, some sort of structures of a combinatorial nature on di�erent
groups.
Some particular objects I'm very interested in studying include Borel

Equivalence Relations, Random walks on groups (and in particular
the Poisson Boundary), symbolic dynamics on groups, Automorphism
groups of subshifts, and entropy theory for both amenable and non-
amenable groups. Some group properties I �nd especially interesting
are amenability, the ICC (in�nite conjugacy class groups) property,
Polynomial growth, Solvable groups, and Hyperbolic groups.
I'm particular fond of classi�cation results. Some particular projects

that I've worked on include
• Classifying which countable groups admit measures with non-
trivial Poisson Boundaries (Joint with Yair Hartman, Omer
Tamuz, and Pooya Vahidi Ferdowsi)
• Classifying which countable groups admit proximal topological
actions (Joint with Omer Tamuz and Pooya Vahidi Ferdowsi)
• enumerating the Borel Cardinalities of countable normal sub-
groups (Joint with Forte Shinko)
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Jonathan Fruchter
University of Oxford
PhD. Advisor: Professor Martin R. Bridson

Pro�nite properties of limit groups

The class of fully residually free groups (that is, groups whose �-
nite subsets can be mapped injectively by a homomorphism to a free
group) has been extensively studied since the 1960's. Finitely gener-
ated fully residually free groups were given the name Limit groups by
Sela, and played a central role in his solution to Tarski's problems on
the elementary theory of free groups. Limit groups form a rich class of
groups, and include all free groups and surface groups (except for the
fundamental groups of non-orientable surfaces with χ ≥ −1). In many
settings, limits are particularly hard (or impossible) to distinguish from
free groups (and from one another), which got me interested as to what
one can learn about limit groups from their �nite quotients.

Wilton showed that free groups can be distinguished from other limit
groups by their �nite quotients; he also showed recently that if G is a
limit group whose pro�nite completion Ĝ is isomorphic to ˆπ1(Σ) (where
Σ is a closed surface), then G ∼= π1(Σ). I am working on extending
these results, and as a �rst step I am trying to �nd pro�nite invariants
of limit groups. Limit groups exhibit a hierarchical structure (they can
be built by amalgamating simpler building blocks over Z subgroups),
and their JSJ decompositions are fairly well-understood. I recently
established partial results towards showing that the minimal height of
a hierarchy of a limit group L is a pro�nite invariant, as well as showing
that L̂ determines the JSJ decomposition of L (in some sense).
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David Futer
Temple University

Statement of research interests

I have two areas of interest within geometric group theory:
• Hyperbolic 3�manifolds and their fundamental groups.
• Group actions on CAT(0) cube complexes.

The two areas of interest are inter-related, via Wise's program to
prove the virtual Haken and virtual �bering conjectures for 3�manifolds.
This program, brought to spectacular conclusion by Agol [1], Wise [5],
and many other mathematicians in 2012, sheds considerable light into
�nite covers 3�manifolds (hence, �nite-index subgroups of 3�manifold
groups) by understanding the actions of these groups on cube com-
plexes. In particular, studying group actions on cube complexes enables
one to separate certain subgroups of 3�manifold groups, providing the
desired covers.
One of my results in the subject is a joint paper with Cooper [2],

where we give a direct proof that a cusped hyperbolic 3�manifold M
contains a ubiquitous collection of immersed, quasifuchsian surfaces.
Here, ubiquitous means that these surfaces have preimages in H3 that
separate every pair of disjoint hyperbolic planes. It follows that M is
homotopy equivalent to a compact non-positively curved cube complex
dual to a certain subcollection of these surfaces. Such a cubulation of
M was previously proved by Wise [5], but our proof is more direct.
In a recent preprint with Hamilton and Ho�man, we produce �nite

covers of hyperbolic 3�manifolds that contain in�nitely many geomet-
ric ideal triangulations. This construction uses a number of subgroup
separability results that were proved using tools from number theory
rather than cubical geometry. In particular, we extend prior work of
Hamilton to prove a new conjugacy separability theorem that enables
us to separate a peripheral subgroups from all conjugates of a periph-
eral coset [3].
Finally, I am interested in random groups and random walks on

groups. In a recent preprint with Wise, we prove that small-density
random quotients of cubulated hyperbolic groups are again cubulated
and hyperbolic [4]. This work extends Gromov's notion of the density
model for random groups to settings other than quotients of free groups.
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Jacob Garcia
University of California, Riverside
PhD. Advisor: Matthew Gentry Durham

Morse boundaries of proper geodesic metric spaces

A well known fact about hyperbolic geodesic spaces is the Morse
Lemma: given a geodesic [x, y] and a quasi-geodesic φ whose endpoints
lie on [x, y], φ stays within a bounded neighborhood of [x, y] where
the bound depends only on the quality of the quasi-geodesic and the
hyperbolicity constant. This lemma was then turned into a de�nition
by Matthew Cordes so it can be applied in more settings. Given a
proper geodesic metric space X and a geodesic γ, we call γ an N-
Morse geodesic if, for any (K,C)-quasi-geodesic φ whose endpoints lie
on γ, we have that φ lies in the N(K,C) neighborhood of γ, where
N : R × R → R+ is a function called the Morse gauge of γ. Fixing a
base point in X, we can then de�ne the Morse strata X(N)

e : the set of
all points x ∈ X so that [e, x] is N -Morse.
The collection of these Morse strata have some remarkable proper-

ties, notably, the collection of all Morse strata of a given base point
forms a cover of the space X, and each X(N)

e is hyperbolic. Using these
ideas, we can construct an analog to the visual boundary of a hyperbolic
space for X, called the Morse boundary. The study of Morse geodesic
rays and the Morse boundary have been important tools for study-
ing wide classes of spaces, such as mapping class groups and CAT(0)
spaces. The Morse strata, in some sense, �sees the hyperbolic directions
in the space."
Studying the Morse boundary has been the focus of my research,

where I am studying under Matthew Gentry Durham as a third year
PhD student. I am currently working on generalizing the classi�cations
of quasi-convex isometry groups into the Morse setting. In particular, I
am working on generalizing horoballs into Morse spaces and exploring
the connections between conical limit points and horoballs in Morse
boundaries of a group to its stable subgroups.
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Conan Gillis
Cornell University

Research Statement

My research has focused on Geometric Group Theory and Low-
Dimensional Topology, speci�cally on Artin Groups and Dehn Surg-
eries along knots (respectively). I will treat them separately below.

Artin Groups. Let Γ be an edge-weighted graph with vertices v1, v2, ...vn
such that every edge eij between vertices vi, vj is given some weight
mij ≥ 2. The Artin Group of Γ has the presentation

A(Γ) = 〈v1, v2, ..., vn | vivjvi... = vjvivj... if eij exists〉,
where in the relation vivjvi... = vjvivj... each side of the equality has
length mij. These groups, and in particular the �right-angled" case
(where each mij = 2), have received signi�cant attention in Geomet-
ric Group Theory and elsewhere. Building o� the work of A. Deibel
[1], I am studying the properties of Artin Groups de�ned by random
edge-weighted graphs using a model developed by Deibel to study the
closely related random Coxeter Groups. I am particularly interested
in the asymptotic probabilities of Artin Groups having various proper-
ties, such as being two-dimensional, as the number of generators (i.e.
vertices of the de�ning graph) tends to ∞.

Dehn Surgery. Given a knot K embedded in S3, we can remove a
toroidal neighborhood of K and glue it back along some homeomor-
phism ϕ : T 2 → T 2. This operation is called Dehn Surgery, and the
resulting space is denoted S3

r (K), where r ∈ Q is the surgery coe�cient
(r is related to ϕ, and the result of a Dehn Surgery, up to homeomor-
phism, only depends on it and not ϕ itself). The following conjecture
on these surgeries is well-known:

Conjecture: For K not equal to the unknot, S3
r (K) is orientation-

preserving di�eomorphic to S3
s (K) if and only if r = s.

In [2] my co-authors and I proved that this conjecture holds for
Kinoshita-Terasaka knots and their mutants, Conway knots, using tech-
niques related to the Alexander and Jones Polynomials, as well as
Heegard-Floer Homology.

Bibliography
[1] Deibel, A. (2020). Random coxeter groups. International Jour-

nal of Algebra and Computation, 30(06), 1305�1321.
https://doi.org/10.1142/s0218196720500423



Research Statements 47

[2] Bryan Boehnke, Conan Gillis, Hanwen Liu, and Shuhang Xue.
The purely cosmetic surgery conjecture is true for the Kinoshita-
Terasaka and Conway knot families, 2020. arXiv:2009.00522



48 Young Geometric Group Theory X

Alexander Goldman
Ohio State University
Advisor: Mike Davis

Cubulations of Artin Groups

A cubulation of a discrete group G is a locally �nite, �nite dimen-
sional CAT(0) cube complex on which G acts properly. In many ways,
CAT(0) cube complexes are generalizations of trees, and thus cubu-
lated groups can be thought of as a higher-dimensional analogue of
groups acting properly on trees. Cubulated groups admit a rich struc-
ture, and thus it is desirable to determine if a group may be cubulated.
One of the more prominent implications of the existence of a cocom-
pact cubulation is the biautomaticity of G, but even if G only admits a
cubulation which is not necessarily cocompact, much can still be said
about the structure of G.
Coxeter groups are of prominent interest in many �elds as they pro-

vide an abstraction of re�ection groups. Sageev [4] presented a con-
struction of a CAT(0) cube complex for certain groups, which was
then used by Niblo and Reeves [3] to cubulate �nitely presented Cox-
eter groups and give a criteria for the cocompactness of the action.
However, for Artin groups, a class of groups with a very similar presen-
tation to Coxeter groups, there has been no similar result. There is a
conjectural classi�cation of Artin groups which admit cocompact cubu-
lations due to Haettel [2] which has been proven for certain classes of
Artin groups, as well as a construction of a non-cocompact cubulation
of certain other classes of Artin groups, also due to Haettel [1].
We are attempting to construct a cubulation of Artin groups by de-

veloping an analogue of the Coxeter group construction. Currently, we
are focusing on type An Artin groups (i.e., the braid groups) with the
hopes that this construction will generalize to other classes. We have
found that a naïve, direct substitution of the analogous objects from
Artin groups into Sageev's construction does not work, but we have
developed a few other candidate constructions. The ideas we have pro-
duced so far have been promising, but we haven't yet been able to
prove much past the fact that the Artin groups in question act prop-
erly. We hope in addition to �nd a criteria for when these complexes
are (virtually) special, as this provides even more information, and in
particular would resolve the question as to if every (�nitely presented)
Artin group embeds in a right-angled Artin group.
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Segev Gonen Cohen
University of Cambridge

Quantifying Finite Approximations of Groups

I am studying �nite approximations of in�nite groups; there are mul-
tiple reasonable notions of what this may mean. Three important such
notions, in descending order of strength, are residual �niteness (RF);
local embeddability into �nite groups (LEF) and so�city. So�city is in
fact such a broad condition that there is no group known not to satisfy
it.
In the past decade there has been great interest in �quantifying� ap-
proximation properties of groups: that is, measuring how �e�ciently�
�nite approximations (in one of the above senses) capture an in�nite
group. In recent years Henry Bradford has developed a suite of tools
for quantifying LEF for various families of in�nite groups ([1]); I aim
to apply these tools to estimate the e�ciency of LEF approximations
for new families of groups.
I also aim to compare and contrast the e�ciency of di�erent types of
approximation for a given group. It is expected that a group will often
be very e�ciently captured by approximations of one type, but very
ine�ciently by approximations of another type; however thus far there
is a signi�cant dearth of examples known to exhibit such behaviour.
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Geometry and rigidity of universal Coxeter groups

Let G be a group and let X be a set equipped with some structure
(for instance, X may be a group, a graph or a simplicial complex).
Suppose that we have an action of G on X which preserves this struc-
ture. Therefore, we have a natural homomorphism G → Aut(X). We
say that the action of G is rigid whenever this homomorphism is an
isomorphism. I am interesting in two particular examples of rigid ac-
tions. The �rst one is when G acts on itself by conjugation. Then the
action is rigid whenever the group Inn(G) of inner automorphisms of
G is equal to the whole group of automorphisms of G. The second
rigid action that I am interested in is a geometric one: we consider the
action of G on a graph X. In that case, when the action is rigid, we
can see G as the group of symmetries of the graph X and we say that
X is a rigid geometric model for G.
In my Ph.D., I try to understand rigid actions when G is a universal

Coxeter group. Let n ≥ 2, let F = Z/2Z be a cyclic group of order 2
and let Wn = ∗nF be a universal Coxeter group of rank n, that is, a
free product of n copies of F . Let Out(Wn) = Aut(Wn)/Inn(Wn) be
its outer automorphism group.
A �rst result in my Ph.D. was to show that, when n is at least equal

to 5, every automorphism of Out(Wn) is induced by a global conjuga-
tion [1]. This result is proved by constructing rigid geometric models
for Out(Wn) and then showing that every automorphism of Out(Wn)
induces a graph automorphism of a rigid geometric model for Out(Wn).
A rigid geometric model of particular importance is the spine of the
Outer space ofWn, denoted byKn. Introduced by Guirardel and Levitt
in [4], the vertices of the graph Kn areWn-equivariant homeomorphism
classes of simplicial trees on which Wn acts by isometries, minimally,
without edge inversion and such that edge stabilizers are trivial and
vertex stabilizers are �nite. There is an edge between two vertices of
Kn corresponding to two equivalence classes S and S ′ whenever there
exist S ∈ S and S ′ ∈ S ′ such that one obtains S from S ′ by collapsing
edges or conversely. The action of Out(Wn) onKn is by precomposition
of the action of Wn. I proved in [2] that Kn is indeed a rigid geometric
model for Wn.
Using similar techniques, I recently proved a stronger rigidity re-

sult, namely that every isomorphism between �nite index subgroups
of Out(Wn) is the restriction of a global conjugation by an element of
Out(Wn) [3].
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Mark Hagen
University of Bristol

Research statement

I will describe a fun project I have been working on, jointly with
Montserrat Casals-Ruiz and Ilya Kazachkov, for a very long time. This
project is a good illustrative example of what I do since it encompasses
most of the things I know about!
The class of simplicial trees generalises in a "coarse" way, to the

class of Gromov-hyperbolic spaces, in a "�ne" way to real trees, and in
a "high-dimensional" way to CAT(0) cube complexes. On the coarse
side, cube complexes generalise to Bowditch's coarse median spaces,
and on the �ne side, to median spaces. Coarse median spaces are very
general, and many examples from nature, like mapping class group of
surfaces and fundamental groups of compact special cube complexes,
have a stronger property, called hierarchical hyperbolicity. We intro-
duce a �ne-geometric notion, that of a "real cubing". Real cubings
generalise cube complexes in the same way that real trees generalise
trees, and they are a special case of median spaces in the same way
that hierarchically hyperbolic spaces are a special case of coarse me-
dian spaces.
In particular, passing from a hierarchically hyperbolic space to its

asymptotic cone, one gets something bilipschitz equivalent to a real
cubing. We're using this to understand the structure of asymptotic
cones of certain hierarchically hyperbolic groups, including right-angled
Artin and Coxeter groups, and mapping class groups of �nite-type
hyperbolic surfaces.
The idea that an asymptotic cone of a mapping class group admits

lots of maps to real trees, from which you can recover its geometry,
goes back to work of Behrstock-Druµu-Sapir, and one chunk of our
project is to generalise this to hierarchically hyperbolic groups. Our
approach is rather di�erent, because much new technology was devel-
oped in the interim � Bowditch's work on coarse median spaces, and
the closely-related theories of measured walls and measured halfspaces
due respectively to Chatterji-Druµu-Haglund and Fioravanti.
Once we have a real cubing structure on our asymptotic cone, we

need to understand what it looks like. In rank one, there is the notion
of a universal real tree; we introduce the notion of a universal real
cubing, which is somewhat more complicated because it is determined
by much more complicated local data (whereas a universal real tree is
determined uniquely by the valence at any point). We show that the
asymptotic cone must be a universal real cubing, which reduces the
problem of understanding the cone to the problem of understanding
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its local structure. To do this, we need to develop something like a
normal form for sequences of elements in a hierarchically hyperbolic
group. It is at this point that we have to introduce some extra algebraic
assumptions, which are fortunately satis�ed by the examples of interest
(mapping class groups, right-angled Artin groups, right-angled Coxeter
groups). For right-angle Artin/Coxeter groups, separability results due
to Haglund-Wise are key; correspondingly, in mapping class groups,
separability of multicurve stabilisers, due to Leininger-McReynolds, is
very important for us.
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Laurent Hayez
Université de Neuchâtel
PhD. Advisor: Alain Valette

Analytical and asymptotical aspects of �nitely generated
groups

My research interests lie somewhere between the worlds of functional
analysis, geometric group theory and probabilities. Indeed, in func-
tional analysis one has the infamous �spectral theorem for bounded
self-adjoint linear operators�, that generalizes on the one hand the de-
composition of a �nite-dimensional endomorphism as a sum of projec-
tions, and on the other hand Lebesgue's integration theory with what
is known as �spectral measures�. For a �nitely generated group G,
with symmetric generating set S = S−1, |S| < +∞, one can look at
its Cayley graph Γ = Cay(G,S) with vertex set V = G and edge set
E = {(g, gs) | g ∈ G, s ∈ S}. The adjacency matrix of Γ can be seen
as an operator A on the Hilbert space `2(V ). It is a linear, bounded
self-adjoint operator. Thus the spectral theorem applies to A, and one
can try to compute its spectral measure. In particular, if we de�ne for
v ∈ V ev ∈ `2(V ) by ev(w) = δvw, we can look at 〈Ane0, e0〉 where
0 ∈ V is the neutral element of G and n ∈ N. The quantities 〈Ane0, e0〉
are exactly the number of paths of length n starting at 0, and ending
at 0. In a probabilistic setting, after renormalization, one can inter-
pret these quantities as the probabilities to return to the origin after n
steps. One way to compute the spectral measure of the adjacency op-
erator (or the Markov operator in you like probabilities more) is thus
to count the number of cycles of length n in a graph. The previous
paragraphs show the relation between functional analysis, geometric
group theory, and probabilities. The book [1] provides a nice intro-
duction to spectral measures, [2] and [3] give a lot of background for
probabilities on graphs. A very nice paper is [4] : the authors compute
the spectral measure of the Lamplighter group Z2 o Z by using perco-
lation theory, uncovering yet another link between spectral measures
and probabilities.
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Groups and Logic

I have just started as a Assistant Professor at California State Uni-
versity, Northridge. Previously, I was a postdoc at MSRI, a postdoc
at HIM, a postdoc at Purdue, and a graduate student at University of
Wisconsin�Madison. I am interested in both Group Theory and Logic,
naturally the intersection of the two. I have some results regarding the
computability strength of �nitely generated groups [1, 2, 3], languages
of geodesics of certain metabelian groups [4, 5], and random (nilpotent)
groups [6].
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Lattices and cohomology in non-positive curvature

I am interested in geometric and cohomological properties of groups
acting on CAT(0) spaces. I am also interested in the topology of mani-
folds such that fundamental group satis�es some non-positive curvature
condition.
As a way of studying CAT(0) lattices I introduced �graphs and com-

plexes of lattices" [4]. This gives a combinatorial way of studying
CAT(0) lattices in a product X × Y , where Y is a tree or CAT(0)
polyhedral complex, by understanding the lattices acting on X. This
approach allowed me to construct groups quasi-isometric but not com-
mensurable to RAAGs with rank 2 centre and construct more CAT(0)
but not biautomatic groups (the �rst examples were due to Leary�
Minasyan). Additionally, I gave an example of a hierarchically hyper-
bolic group which is not virtually torsion-free [5].
Much of my work has revolved around explicit computations of group

cohomology and K-theory [1,2,3]. I have also proved �the unstable
Gromov�Lawson�Rosenberg conjecture" on positive scalar curvature
for groups satisfying the Baum�Connes conjecture with a number of
conditions on their �nite subgroups [3].
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Merlin Incerti-Medici
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Limit sets of quasi-convex subgroups and abstract nonsense
for quasi-morphisms

Let G be a group acting geometrically on a CAT(−1) manifold X
and let H be a quasi-convex subgroup of G. The visual boundary
∂∞X of X, which can be thought of as points lying at in�nity of X
represented by geodesic rays, provides a topological invariant of the
group G. In the situation where X is a manifold of dimension n+1, its
visual boundary is homeomorphic to the sphere Sn. There are various
results that connect the 'wildness' of the limit set Λ(H) ⊂ ∂∞X of H to
results about the action of H on X. For example, Bonk-Kleiner proved
that when a group H acts quasi-convex geometrically on a CAT(−1)
space X and its limit set has topological dimension n, then its limit set
Λ(H) ⊂ ∂∞X satis�es that dimHaus(Λ(H)) ≥ n with equality if and
only if H acts geometrically on an isometric copy of Hn+1 in X (see
[1,2]).
This and other results lead our attention to the question how Λ(H)

embeds into ∂∞X. Restricting to a simpler case where the limit set of
H is homeomorphic to a sphere Sn−1 of codimension one, we consider
the convex hull of Λ(H) inside X. It turns out that there are some
fairly general constructions with this convex hull that may lead to sen-
sible characterisations on when Λ(H) is wild in ∂∞X.

A second project relates to the study of quasi-morphisms. Given
a group G, its quasi-morphism space Q(G) can be thought of as the
vector space of 'coarse group-homomorphisms' from G to R. In analogy
to group-homomorphisms from G to Z one may attempt to understand
Q(·) as a functor. If one wishes to use this analogy in practice, it
requires to develop a suitable abelian category that quasi-morphisms
naturally �t into. Doing so leads one to study quasi-morphisms on
approximate groups and how coarseness may allow to incorporate non-
abelian groups into an abelian category.
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Victor Jaeck
ETH Zürich
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The asymptotic geometry of groups

I will start a Ph.D. in September and we will decide on my thesis
topic with my advisor over the summer. For the past year, I have been
studying the asymptotic geometry of groups and the theory of limit
groups. The latter correspond to fully residually free groups but are
also limit of elements in the set of normal subgroups of a free group
endowed with the Gromov�Hausdor� and Chabauty topology. In par-
ticular, I studied in my master's thesis the set of growth rates of limit
groups by reinterpreting the study of its well-ordering, carried out by
Fujiwara and Sela, using the theory of asymptotic cones and the anal-
ysis of limit actions of limit groups on real trees. The result obtained
in my master's thesis is strictly weaker than the result obtained by
Fujiwara in an article published on arXiv this year but uses simple
arguments about algebraic varietes to avoid using the theory of Rips
machines.
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Probabilities and Model Theory

1. Introduction

My work is at the intersection of dynamics, probability and model
theory. It focuses on a specialization of the notion of amenability:
unique ergodicity. This notion was introduced by Angel, Kechris and
Lyons in [1], though the notion of a uniquely ergodic action has been
around for much longer. To understand what it refers to, we need to
de�ne some notions from topological dynamics.
Let G be a Polish group, i.e. a topological group whose topology is

separable and completely metrizable. We call a G-�ow the action of G
on a compact space. A G-�ow is said to be minimal if every orbit is
dense.
De�nition. G is said to be amenable if every G-�ow admits an in-
variant probability measure, and uniquely ergodic if every minimal �ow
admits a unique invariant probability measure.
A famous theorem of Ellis states that any Polish group G admits

a unique universal minimal �ow (UMF) that we denote M(G). This
means that for any minimal G-�ow X there is a surjective G-map from
M(G) to X.
This action can be used to describe di�erent characteristics of the

group. For example, it allowed Angel, Kechris and Lyons to prove
that if one denotes by R the Rado graph (the only countable graph in
which any �nite graph can be embedded and which is homogeneous, i.e.
structures where every local isomorphism between �nite substuctures
can be extended into an automorphism of the structure):
Theorem 1. Aut(R) is uniquely ergodic.
Their proof relies on a description of M(Aut(R)) coming from a re-

sult of Kechris, Pestov and Todorcevic in [2]. This description applies
more generally to homogeneous structures. This work opened a connec-
tion between dynamics and Ramsey theory, and has motivated much
research.
Angel, Kechris and Lyons actually proved the unique ergodicity of

the automorphism groups of many more homogeneous structures in [1].
They ask the following question which guided my work:
Question 1. Let G be an amenable Polish group with metrizable uni-
versal minimal �ow, is G uniquely ergodic ?
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2. Unique ergodicity and Cherlin's directed graphs

Using a classi�cation of homogeneous directed graphs by Cherlin
and methods from [1], Pawliuk and Soki¢ were able to prove in [3] that
the answer to Question 1 was positive for all automorphism groups of
homogeneous directed graphs, except for one case where their method
did not apply: the semigeneric directed graph. One of my �rst pieces
of work consisted in �lling that gap.
Theorem 2. The automorphism of the semigeneric directed graph is
uniquely ergodic.
The proof relies on the ergodic decomposition theorem, allowing one

to show that any invariant probability measure satis�es certain inde-
pendence properties. In future work, I hope to generalize this method
to a wider class of structures.

3. Structure of M(G) and unique ergodicity for group

extensions

Let G be a Polish group, and suppose H ⊆ G is a closed, normal
subgroup. Setting K = G/H, we have that K is also a Polish group,
and the quotient map π : G→ K is a continuous, open homomorphism.
In this setting, we say that G is an extension of K by H. This is the
same as saying that

1→ H → G
π−→ K → 1

is a short exact sequence. With Andy Zucker, we proved that :
Theorem 3. If M(H) and M(K) are metrizable, then so is M(G).
Furthermore, letting π : M(G)→ M(K) be the canonical map, we have
that π−1({y}) is a minimal H-�ow for every y ∈ M(K). Moreover, if
both H and K are uniquely ergodic, then G is also uniquely ergodic.
This result was already known for semidirect products due to Pawliuk

and Sokic in [3].

4. A minimal model-universal flow for locally compact

Polish groups

The universal minimal �ow is a minimal �ow which maps onto any
other minimal �ow; by understanding the properties of this one object,
we can better understand the collection of all minimal �ows. With
Andy Zucker, we proved that when G is a locally compact Polish group,
there exists another minimal �ow which is universal in a di�erent sense,
in that it contains a copy of any probability measure-preserving free
action. Similarly, this "universal minimal model" can help shed light
on the dynamical properties of a given locally compact group.
By a G-system, we mean a Borel G-action on a standard Lebesgue

space (X,µ) which preserves µ. We say that a G-system (X,µ) is free
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if the set

Free(X) := {x ∈ X : ∀g ∈ (G \ {1G}) gx 6= x}

has measure 1 (remark that this set is Borel because G is locally com-
pact). We say that a G-�ow Y is model-universal if for every free
G-system (X,µ), there is ν a G-invariant probability measure on Y
with (X,µ) ∼= (Y, ν).
This work is a generalisation of a work of Weiss in [4]. He proved that

all countable discrete groups admit a minimal model-universal �ow,
Theorem 4. Let G be a locally compact, non-compact Polish group.
Then there exists a minimal model-universal �ow for G.

As a corollary, we get:
Question. Let G be a locally compact non-compact Polish group.
Then there is a minimal G-�ow with multiple invariant probability mea-
sures. In particular, G is not uniquely ergodic.
This result was suggested in [1] (see p. 2063).

5. Unique ergodicity of the action on the space of linear

orderings

The results in this section takes a di�erent approach to unique er-
godicity. Rather than looking at the universal minimal �ow of a given
group, we look at speci�c actions and study their possible invariant
probability measures.
For a homogeneous structure F there are two Aut(F)-�ows we study.
1) Aut(F) y [0, 1]F by permuting the coordinates.

This �ow always admits some invariant probability measures
of the form νF for some probability measure ν on [0, 1].

2) If we denote by LO(F) for the space of linear orderings of F,
there is an action ofAut(F) on LO(F) , de�ned as

a(g· <)b⇔ g−1a < g−1b.

Theorem 5, which I used in the proof of Theorem 6.
Theorem 5. Let F be an ℵ0-categorical, transitive structure with no
algebraicity that admits weak elimination of imaginaries and let G =
Aut(F). Let Z be a standard Borel space and consider the natural action
Aut(F) y ZF. Then the only invariant, ergodic probability measures
on ZF are product measures of the form λF, where λ is a probability
measure on Z.
Theorem 6. Let F be a transitive, ℵ0-categorical structure with no
algebraicity that admits weak elimination of imaginaries. Consider the
action Gy LO(F). Then exactly one of the following holds:

(1) The action Gy LO(F) has a �xed point (i.e., there is a de�n-
able linear order on F);

(2) The action Gy LO(F) is uniquely ergodic.
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One motivation for this result is that in many cases, LO(F) is the
universal minimal �ow of the group. I hope that this will lead to a
better understanding for the more general Question 1.
Many previously known examples of uniquely ergodic groups fall

under this theorem. Moreover, we get some interesting consequences,
for instance the following non-amenability result.
Corollary. Suppose that F satis�es the assumptions of Theorem 5 and
let G = Aut(F). If the action G y LO(F) is not minimal and has no
�xed points, then G is not amenable.
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Arye Juhász
Technion, Israel Institute of Technology

Combinatorial Group Theory

One-relator groups and Artin groups and their generalistions, vari-
ous classes of presentations, classi�cation and decision problems within
these classes."
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Name: Simon Jurina
A�liation: University of St Andrews, School of Mathematics and Sta-
tistics, St Andrews, KY16 9SS
PhD Advisor: Prof Colva M. Roney-Dougal

Decision Problems in Finitely Presented Groups

Suppose that G is a �nitely-presented group with the Cayley graph
Γ endowed with its graph metric. Then G is said to be hyperbolic if
there exists a δ > 0 such that any triangle T in X is δ-slim: for any
point p on one of the sides of T there exists a point q in the union of
the other two sides with d(p, q) < δ. Another equivalent de�nition of
hyperbolicity is that a �nitely-presented group G is hyperbolic if and
only if its Dehn function is linearly bounded. Hyperbolic groups can
be characterized in several di�erent ways: for example, these are the
groups that act on hyperbolic metric spaces. My research projects,
however, focus more on their algorithmic properties.

I am working on two di�erent but related research questions. In
the �rst project I have developed a new polynomial-time procedure for
showing hyperbolicity of �nitely-presented groups. I build on the the-
ory of [1], and work with a new type of van Kampen diagram. The
general idea used in the procedures is to assign curvature to vertices,
edges and faces of a diagram Γ in such a way that the overall curvature
of Γ sums to 1; vertices, edges and the external face of Γ have curva-
ture 0; faces of Γ labelled by a pre-determined subset of the relators
have also curvature 0; and faces of Γ labelled by other relators, that
are su�ciently far from the boundary of Γ have curvature smaller than
−ε for some ε > 0. If we can achieve this for a suitable set of such
diagrams Γ, then we can �nd a linear bound on the Dehn function,
thus proving that the input group is hyperbolic.

In the second project I have developed of a quadratic-time conjugacy
problem solver, where the input group is a �nitely-presented hyperbolic
group. Both procedures have been implemented in the computer alge-
bra system Magma.
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Chris Karpinski
McGill University/Carleton University
Advisors: Marcin Sabok/Inna Bumagin

Research Statement

I am an incoming master's student at McGill University, to be start-
ing this fall (supervisor: Marcin Sabok). I am currently studying and
working in geometric group theory. This summer, with Professor Inna
Bumagin at Carleton University, I am working on a solution to the si-
multaneous conjugacy problem for �nite lists (also known as the White-
head problem for inner automorphisms for �nite lists) in relatively hy-
perbolic groups (with a solution to the simultaneous conjugacy problem
being given in the parabolic subgroups). I am also learning about hier-
archically hyperbolic spaces and groups, with an interest in solvability
of algorithmic problems in hierarchically hyperbolic groups. Earlier
in my undergrad, I studied tensor network models of AdS/CFT and
applications to quantum information, where I had the chance to learn
about the theory of von Neumann algebras and their applications to
AdS/CFT and quantum information. I am interested in connections
between geometric group theory and operator algebras. Besides the
above, I also enjoy learning and thinking about various areas of al-
gebra and geometry such as algebraic geometry, di�erential geometry,
representation theory and homological algebra.
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Annette Karrer
Technion � Israel Institute of Technology
Ph.D. advisor: Petra Schwer; current supervisor: Nir Lazarovich

CAT(0) spaces and their boundaries

Last year, I �nished my Ph.D. about contracting boundaries (also
known as Morse boundaries) of right-angled Coxeter groups. Every
complete CAT(0) space has a topological space associated to it, called
the contracting or Morse boundary. This boundary indicates how sim-
ilar the CAT(0) space is to a (Gromov-) hyperbolic space. Charney�
Sultan [1] proved this boundary is a quasi-isometry invariant, i.e. it can
be de�ned for CAT(0) groups. In my thesis, I generalized an example
of Charney�Sultan to obtain a new class of right-angled Coxeter groups
with totally disconnected contracting boundaries [2]. A joint project
with Marius Graeber, Nir Lazarovich, and Emily Stark about surpris-
ing circles in contracting boundaries of right-angled Coxeter groups [3]
was related to my Ph.D. topic. Besides, I studied group actions on sys-
tolic complexes during my Ph.D. in a joint project with Petra Schwer
and Koen Struyve [4].

Now, I am still interested in group actions on spaces with non-
positive curvature and their boundaries. In particular, I like CAT(0)
cube complexes a lot. Currently, I am studying Tits boundaries of
CAT(0) spaces, cubulations of surfaces, separation pro�les of right-
angled Coxeter groups, and Higman's group.
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Colby Kelln
Cornell University

I am a second year PhD student interested in learning more about the
di�erent subareas of GGT.
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Daniel Keppeler
Westfälische Wilhelms-Universität Münster
PHD-Advisor: Linus Kramer

Automatic continuity in a �ech-complete setting

Given two topological groupsG andH and a homomorphism f : G→
H it is common to ask, if f preserves the topological structure i.e. if
f is continuous. While not every homomorphism between arbitrary
topological groups is going to be continuous, I am interested in special
conditions on G and H under which every abstract homomorphism
is automatically continuous. More precisely I study conditions for
discrete groups H under which every homomorphism from any �ech-
complete (e.g. locally compact or completely metrizable) group to H is
continuous. As a starting point for this, I generalized a result of Dud-
ley[1], which states, that any homomorphism from any �ech-complete
group to Z is already continuous and introduced the following de�nition
(based on notations by Connor and Corson):

A discrete group H is called �c-slender if every Homo-
morphism from any �ech-complete group to H is con-
tinuous.

�c-slender groups have to be torsion-free (since there are discontinu-
ous homomorphisms from the compact group

∏
N Z/pZ → Z/pZ), so

one might ask, what results we might expect for groups with torsion.
More precisely, I am interested in conditions on the torsion subgroups
of a discrete group H under which every homomorphism from any
�ech-complete group to H is either continuous or has small image.
In (upcoming) joined work with Möller and Varghese we showed �rst
results for this in a locally compact setting.
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Alice Kerr
Oxford University
PhD. Advisor: Prof. Cornelia Drutu

Product set growth in acylindrically hyperbolic groups

For a �nite subset U of a group G, we de�ne its nth product set to
be Un = {u1 · · ·un : u1, . . . , un ∈ U}. I am interested in how |Un|
behaves as n→∞.
Question: For a group G, do there exists constants α, β > 0 and

a class of subgroups H such that for every �nite (symmetric) U ⊂ G
where 〈U〉 /∈ H, we have that |Un| > (α|U |)βn for every n ∈ N?
We would ideally like to �nd a dichotomy of �nitely generated sub-

groups, so they are either in H, or all of their generating sets satisfy
this exponential inequality. This question has already been answered
for free groups [1], and more generally for hyperbolic groups [2]. Here
H is simply the virtually cyclic subgroups.
For acylindrically hyperbolic groups the picture is a bit more compli-

cated, however results in this area do exist, notably in [2]. By adapting
this result to quasi-trees, I have been able to answer the question above
for right-angled Artin groups [3]. In this case H is all the subgroups of
direct products of the form H × Z, where the projection to H is not
injective. I am currently interested in seeing for which other groups
this question can be answered.
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NAME: Nayab Khalid
AFFILIATION: Independent
PHD ADVISORS: Collin Bleak, Martyn Quick

Geometric Presentations of Rearrangement Groups

I am interested in how the topological properties of geometric spaces
in�uence the dynamics and behaviour of the in�nite groups which act
on them. In my PhD thesis, I studied the groups of homeomorphisms
of self-similar topological spaces � or, rearrangement groups of fractals
[1]. These groups include, but are not limited to, Richard Thompson's
groups F , T and V [2]. In the thesis, we developed a combinatorial
framework that assists in �nding natural in�nite �geometric" presenta-
tions for a large subclass of rearrangement groups. In this framework,
for a given fractal set with its group of �rearrangements", the group
generators have a natural one-to-one correspondence with the standard
basis of the fractal set, and the relations are all conjugacy relations.
More recently, I have been interested in how this framework provides

a natural link to the rotation distance problem [3] (which was also
discussed in [4]). This link provides an application of my research to
computer science via binary search algorithms.
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Heejoung Kim
University of Illinois at Urbana-Champaign
PhD advisor : Ilya Kapovich

Generalizations of the theory of hyperbolic groups

I received my PhD from the University of Illinois at Urbana-Champaign
in May of 2021. I am interested in generalizing the theory of hyperbolic
groups. In particular, my thesis focuses on studying generalizations of
quasiconvex subgroups which provide an important class of subgroups
of word-hyperbolic groups. Also, my research centers on �nding algo-
rithms for detection and decidability of various properties of �nitely
generated groups.
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Benjamin Klopsch
Heinrich-Heine-Universität Düsseldorf
(DPhil 2000)

Asymptotic Group Theory and Pro�nite Groups

My research activities in Asymptotic and Geometric Group Theory
are directed towards the study of in�nite groups with a view toward
Number Theory. For instance, I am interested in arithmetic groups and
p-adic Lie groups. Other problems that I work on concern more general
pro�nite groups, which occur in nature as Galois groups of in�nite �eld
extensions.
Below I list, as a sample, two joint papers that came out last year.

Full publication records can be found on the arXiv, on MathSciNet or
zbMATH, and on my personal web site.
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NAME: GEORGE KONTOGEORGIOU
AFFILIATION: UNIVERSITY OF WARWICK
PHD ADVISOR: AGELOS GEORGAKOPOULOS

Equivariant Cayley Complex Embeddings

My work is mainly concerned with the Cayley complexes of groups
acting on S3. Speci�cally, I explore the correspondence between faith-
ful, topological, properly discontinuous actions over S3 and equivariant
embeddings of Cayley complexes in S3. So far, I have tackled this topic
for �nite groups, producing the following two theorems:

Theorem 1. Every �nite group which admits a faithful topological
action on S3 has a Cayley complex which embeds equivariantly in S3.

Theorem 2.Every �nite group which has a Cayley complex which em-
beds in S3 admits a faithful topological action on S3 which makes the
embedding of the Cayley complex equivariant.

For the next part of my work, I am considering the following two
questions:

Question 1.To which �nitely presentable groups can Theorems 1 and
2 be extended?

Question 2.Is there a theorem akin to Theorem 1 for groups acting
on R3?

I am also interested in various questions concerning graphs and 2-
complexes, both �nite and in�nite.
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Monika Kudlinska
University of Oxford
Ph.D. advisors: Martin Bridson and Dawid Kielak

Fibering of free-by-cyclic groups via polytopes

A free-by-cyclic group G is a group which �ts into the short exact
sequence

(1) 1→ F → G→ Z→ 1,

where F is a free group of �nite rank. The fundamental group of any
3-manifold which �bers over the circle with �ber a punctured surface
is free-by-cyclic. As a result, the study of free-by-cyclic groups is often
conducted in an analogous manner to that of the 3-manifold case.
One particularly fruitful tool in the study of 3-manifolds is the Thurston

seminorm and the associated polytope. If M is a compact oriented 3-
manifold, its Thurston seminorm is a seminorm de�ned on the �rst
cohomology of M with real coe�cients. The unit ball of the Thurston
norm is known as the Thurston polytope. If a character φ : π1(M)→ Z
is induced by a �bration of M , then every character which lies in the
same face of the Thurston polytope as φ is also induced by a �bration
of M . In this way, the polytope controls all possible �brings of the
3-manifold M .
In a series of papers [1,2] , Friedl, Lück and Tillman de�ned a sim-

ilar polytope construction for a wider class of groups, including most
3-manifold groups, most 2-generator 1-relator groups and all free-by-
cyclic groups. Subsequently, Kielak [3] showed that the polytope is a
group invariant � that is, it does not depend on the particular pre-
sentation of the group � and that it also controls (now the algebraic)
�berings of the groups for which it is de�ned.
An immediate consequence of the polytope construction, also proved

by Button [4] for free-by-cyclic groups using di�erent methods, is the
abundance of distinct �berings of the same free-by-cyclic group. More
precisely, for any free-by-cyclic group G such that the free rank of
H1(G;Z) is greater than 1 and G 6' Z2, G �ts into an exact sequence
(1) for in�nitely many di�erent isomorphism types of the free group
F . Each such �bering gives rise to an outer automorphism of the
corresponding free group.
I'm interested in common properties of outer automorphisms of free

groups associated to �berings of the same free-by-cyclic group. This is
intimately linked with studying the e�ects of the dynamics of the outer
automorphism on the algebraic and coarse-geometric structure of the
corresponding free-by-cyclic group. Results of this �avour can be found
in the work of Brinkmann [5] and, more recently, Mutanguha [6], thus
indicating a strong relationship between the two. I hope to further our
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understanding of this relationship by studying the structure and the
properties of the associated polytopes.
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Amina Assouda Ladjali
University of Southampton
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Polynomial Growth of Coarse Intervals in Coarse Median
Spaces

During my PhD, I have been working with coarse median spaces;
these were introduced by Bowditch in [1] and informally are coarsened
versions of CAT(0) cube complexes. More intuitively, one can think of a
coarse median space as a metric space equipped with a ternary operator
(the coarse median), where �nite subsets can be approximated by �nite
CAT(0) cube complexes in which the error/distortion is controlled by
the metric.
This notion of a coarse median space provides a uni�ed approach

of looking at di�erent spaces, such as Gromov-hyperbolic spaces and
mapping class groups (which Bowditch showed are coarse median in
[1]), and hence we are able to view all these spaces and groups under
one umbrella.

More speci�cally, I am interested in coarse intervals within coarse
median spaces. Loosely speaking, coarse intervals are coarsened ver-
sions of intervals, and in the CAT(0) cube complex case, these con-
stitute the set of points lying on any edge path geodesic connecting a
pair of points in the cube complex. Their structure and geometry has
been explored in both [2] and [3], and overall I aim to prove polynomial
growth of these coarse intervals � I am very close to showing this for
rank 2 intervals and plan to extend this to higher rank.
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Hermès Lajoinie
Institut Mathématiques de Toulouse- Université de Montpellier
PHD Advisor :THOMAS HAETTEL

Rigidity and median

For my Master Thesis, I studied linear escape of random walk on
hyperbolic space [1] under the supervision of Jean Raimbault.
Next year, I will begin my PHD under the supervision of Thomas
Haettel in the University of Montpellier. I will study rigidity of group
actions on coarse median spaces [2] of group having strong property
(T) [3].
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Random walks on proper CAT(0) spaces

I am a �rst year PhD student, and my �elds of interest are dynamical
systems and geometry. More speci�cally, I am studying discrete groups
acting on spaces of non positive curvature, namely CAT(0) spaces. If
we construct a random walk on a group G acting on a metric space X
using a non elementary measure µ, one of the problems is to wonder
whether the random walk associated to µ, when applicated on the
space X, converges to the visual boundary ∂X. It is known to be true
when X is a hyperbolic space (even without the assumption that X is
proper), thanks to [1], and Karlsson and Margulis proved it in the case
where the space X is CAT(0), when we have a hypothesis of �rst �nite
moment and positive drift [2]. The content of my work so far has been
to understand the theory behind these problems and to try and extend
some of the previous results, for exemple if we replace the hypothesis
of positive drift by the existence of a rank-one element in the group.
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Corentin Le Coz
Technion - Israel Institute of Technology

Separation pro�les and Poincaré pro�les

Introduction. Given two metric spaces, a natural question is to won-
der whether one can be embedded in the other, in a way that respects
the distances. In the context of graphs, a �rst answer, maybe trivial,
is the existence of a strict graph embedding, i.e. an injective applica-
tion on the vertices that preserves the edges. However, in the context
of geometric group theory, it is more natural to consider more �exi-
ble notions of embeddings like quasi-isometric and coarse embeddings.
Here, we will be interested in regular maps as de�ned by Benjamini,
Schramm and Timár [1]: maps that are Lipschitz and such that the
preimages of singletons have a uniformly bounded cardinality. This is
a loose notion of embedding, in particular quasi-isometric and coarse
embeddings are regular maps (if the initial graph is connected).
It is usually a di�cult question to decide whether one space can be

embedded in another. To answer positively, one usually has to exhibit
an embedding. To answer negatively, one needs to �nd an obstruction
to the existence of such an embedding. An important idea of modern
geometry is to associate to every space a data, belonging to a set en-
dowed with a partial order (usually a number or a function), that will
be compatible with the notion of embeddings we have chosen. This is
called a monotone invariant, and it is then able to give obstructions
to their existence. In the case of regular maps, few such invariants
are known: volume growth, asymptotic dimension, and more recently,
separation and Poincaré pro�les. Volume growth and asymptotic di-
mension are very coarse, hence those pro�les have great interest.
The separation pro�le was introduced by Benjamini, Schramm

& Timár [1]. As remarked by Hume [5], the separation pro�le of an
(in�nite) graph G at n ≥ 0 can be de�ned by

sepG(n) = sup{|V Γ|h(Γ) : Γ ⊂ G, |V Γ| ≤ n},

where h(Γ) denotes the Cheeger constant of the graph Γ. Hume,
Mackay and Tessera generalized this pro�le by de�ning, for any p ∈
[0,∞] the Lp-Poincaré pro�le of an (in�nite) graph G by:

ΠG,p(n) = sup{|V Γ|hp (Γ) : Γ ⊂ G, |V Γ| ≤ n},

where hp (Γ) denotes the Lp-Cheeger constant of the graph Γ. For
graphs of bounded degree, the L1-Poincaré pro�le and the separation
pro�le are equivalent up to constants.
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Prescription of high separation pro�les. Indeed, when such an
invariant takes few values, it is less relevant since in many cases it
won't be able to give an obstruction. It is clear from the de�nition
that any Poincaré pro�les is least constant and at most linear. It is
then natural to ask what are the possible pro�les within this range.
This issue is, in some sense, orthogonal to the initial question of the
existence of embeddings: it asks the �nesse of the invariant.
We already know that the separation pro�le can have variety of be-

haviour. Indeed, hyperbolic groups can have a constant pro�le (trees
[1,Theorem 2.1.]), a logarithmic pro�le, a power pro�le (lattices in hy-
perbolic spaces [1,Proposition 4.1.], [6,Theorem 12]) or a linear pro-
�le (acylindrically hyperbolic groups containing expanders [5,Theorem
1.3]). Among amenable groups, we know that one can �nd arbitrary
small unbounded pro�les [7,Theorem 1.4], power pro�les (nilpotent
groups [6,Theorem 7]), and pro�les bounded by n

(logn)2
and n

logn
(poly-

cyclic groups [10]). Concerning the prescription (up to constants) of
separation pro�les, we can mention two main results:

• the prescription of low pro�les by Hume and Mackay [7], with
lacunary hyperbolic groups from [11] (pro�les arbitrarily low,
below log).
• the prescription of medium pro�les, mainly solved by Hume,
Mackay and Tessera [6], with groups acting on Bourdon-Pajot
buildings [3] (pro�les ' nα for any α in a dense subset of (0, 1)).

Our main contribution solves this question for high separation and
Poincaré pro�les [9]: pro�les from n

(log logn)a
(for any positive a) to n

(not attained), see Theorem 1. These examples are amenable groups
constructed by Brieussel and Zheng [4]. This shows that amenable
groups can have a variety of behaviours with respect to Poincaré pro-
�les. Moreover, all our examples have exponential growth and asymp-
totic dimension one, which shows that those pro�les are not redundant
with respect to these invariants.

Theorem 1.There exists two universal constants κ1 and κ2 such that
the following is true. Let ρ : R≥1 → R≥1 be a non-decreasing function
such that x

ρ(x)
is non-decreasing and lim∞ ρ = ∞. We assume that ρ

is injective and that there exists some α > 0 such that ρ−1(x)
exp(xα)

is non-
decreasing. Then, there exists a �nitely generated elementary amenable
group ∆ of exponential growth and of asymptotic dimension one such
that for any p ∈ [1,∞),

Π∆,p(n) ≤ κ1
n

ρ(log n)
for any n,

and Π∆,p(n) ≥ 4−pκ2
n

ρ(log n)
for in�nitely many n's.
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One of my future plans is to compute separation and Poincaré pro�les
on new examples. In particular, the problem of low pro�les (between
constant and log) seems very interesting. There is a gap theorem for
�nitely presented groups [7], it would be interesting to �nd other classes
of groups having this gap, or to �nd other groups with pro�les within
this range.

Bounds on separation pro�les. It is an important question to com-
pare separation and Poincaré pro�les with other known quantities. We
give here our two major contributions to this problem. The �rst gives
an upper bound on the Poincaré pro�les, and the second a lower bound
on the separation pro�le.
Compression of embeddings. We can start by a theorem giving an upper
bound from compression in Lp spaces, that it at the origin of the upper
bound on Theorem 1. We de�ne the compression of a 1-Lipschitz
map f : G→ Lp as

ρf (t) = inf{‖f(g)− f(h)‖p | dG(g, h) ≥ t}.

We showed the following theorem [9].
Theorem 2.Let G be a graph of bounded degree. Then there exists
two constants c1, c2 > 0, depending only on the maximum degree in
G, such that if f : V G→ Lp is a 1-Lipschitz map for some p ∈ [1,∞),
then

ΠG,p(n) ≤ c1
n

ρf (c2 log n)
, for all n ≥ 0.

This is optimal at least for product of trees (see [1]), and in Theorem
1.
Isoperimetric pro�les. In [10], we give comparison statements between
the separation pro�le and the isoperimetric pro�le, de�ned by:

Λ(n) = inf {|∂F |
|F |

: F ⊂ V G, |F | ≤ n}.

We detail here some examples of applications, from [10].

Theorem 3.Let G be a graph of bounded degree such that K1

n1/d ≤
Λ(n) ≤ K2

n1/d for some constants K1 and K2, then, ∃K3 > 0 such that

for all n,
sep(n)

n
≥ K3

n1/d
.

This theorem can be used on Cayley graphs of nilpotent groups (for
which a sharper upper bound was already given by Hume, Mackay &
Tessera [6], but the method applies also to other type of graphs, such as
pre-fractal Sierpinski carpets. They can also be applied to graphs with
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logarithmic isoperimetric pro�le, we obtained the following statement
in [10].

Theorem 4.Let G be a graph of bounded degree.

If, for some a > 0, Λ(N) is ... then, for in�nitely many N ′s,
sep(N)

N
is

...

4
1

log(N)a
<

Λ(N)

log(N)

4
1

loga
(

log(N)
) <

Λ(N)

log(N)C
(for some C)

4
1

(log . . . log logN)a
<

Λ(N)

N ε
, where ε can be arbitrarily

small

These estimates on the isoperimetric pro�le are known for polycyclic
groups which are not nilpotent (�rst row of the table with a = 1),
groups with intermediate growth (�rst row), wreath products F o N
where F is �nite andN is a nilpotent group whose growth is polynomial
of degree d (�rst row with a = 1/d), iterated wreath products F o(F oN)
where F is �nite andN is a nilpotent group whose growth is polynomial
of degree d (second row with a = 1/d), solvable groups in general (third
row).
In this subject, I think that �nding new bounds theorems could

help understanding more deeply the links between Poincaré pro�les
and other quantities. Probabilistic quantities like the probability of
return of a stable random walk may have a link with Poincaré pro�les.

Interaction with algebra. One of the main pupose of geometric
group theory is to draw links between algebraic and geometric proper-
ties of the groups. In this direction, the more important result is the
fact that a �nitely generated group has a bounded separation pro�le
if an only of it is virtually free, see Benjamini, Schramm & Timár [1]
and Hume & Mackay [7].
Hume, Mackay and Tessera showed that every nilpotent group has

a Poincaré pro�le equivalent to n
d−1
d , where d is the volume growth

rate of the group [6]. Our main contribution in this area is a reciprocal
statement, among solvable groups [10]:
Theorem 5.Let G be a �nitely generated solvable group. If there
exists ε ∈ (0, 1) and c > 0 such that for any large enough integer n we
have

sepG(n) ≤ cn1−ε,



86 Young Geometric Group Theory X

then G is virtually nilpotent.

Combining with the computaton of pro�les of cocompact lattices in
hyperbolic spaces [1] and Bonk & Schamm's embedding result [2], it
has the following corollary.
Corollary 1.Let G be a �nitely generated solvable group. If there
exists a regular map from G to a �nitely generated hyperbolic group,
then G is virtually nilpotent.

This corollary was already obtained by Hume & Sisto [8] in the case
of coarse embeddings, with a completely di�erent proof.
For this subject, I have two main projects. First, the origin of the

dichotomy between solvable and nilpotent groups may be the fact that
the lamplighter group Z2 oZ coarsely embeds in any exponential growth
solvable group, I am interested in investigating this. Second, the rela-
tionship between amenability and Poincaré pro�les is not clear at the
moment, so I would like to understand it more deeply.

Local separation pro�les. The methods of [10] also yield results on
the in�nite percolation components of Zd, and more generally on a
large class of graphs of polynomial growth, called polynomial graphs.
Roughly speaking, a (d1, d2)-polynomial graph is a graph of volume
growth bounded by nd2 and of isoperimetric dimension at least d1.
Since the percolation component always includes arbitrary large balls,
it is more interesting to introduce a local variant of the separation
pro�le in this context, namely the local separation at v, where v is a
vertex of the graph:

sepvG(n) : = sup
F<BG(v,r), |BG(v,r)|≤n

|F | · h(F ).

In that case, we show that sepvG(n)

n
is bounded below by a function of

the type n−α, for every vertices in the polynomial case, and for vertices
that stay exponentially close to the origin in the Zd percolation case,
see [10]:

Theorem 6. Let G be a (d1, d2)-polynomial graph. Then for any
η ∈ (0, 1) there exists c > 0 such that for any vertex v and any integer
n:

sepv(n) ≥ cn
(1−η)

d21(d1−1)

d32

Theorem 7. Let C∞ be a supercritical phase percolation cluster of Zd.
Then for any ε ∈ (0, 1) There exists almost surely c > 0 such that for
n large enough, if ‖x‖∞ ≤ exp

(
n(1−ε) d

d−1

)
, then we have:

sepxC∞(n) ≥ cn
d−1
d
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The inclusion in Zd shows that this lower bound is optimal. I would
like to develop this notion of local separation: study the separation
of Benjamini-Schramm limits of graphs, and construct algorithms for
�nding explicit high cut subgraphs.
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Growth in groups of non-positive curvature : the force of the
triangle inequality unleashed.

I am a second year PhD student living somewhere between Madrid
and Rennes. More precisely, I am interested in problems of growth in
groups.

Given a hyperbolic space, there exists a real number α such that for
every natural n, the volume of any ball of radius n is roughly exp(αn).
Given a subset E of a �nitely generated group, its exponential growth
rate ω(E) is a generalisation of these numbers α. It provides a way
of measuring the � size � of E. When H is a normal subgroup of
a hyperbolic group, we observe that the growth of the quotient G/H
veri�es ω(G/H) < ω(G) [2]. If the gap were very small, the relators
of the quotient would be very large. In fact, the situation is very dif-
ferent when H is not normal in G but quasi-convex of in�nite index.
In this case, a result of Gitik-Rips [4] and another of Antolín [1] show
that the growth of the Schreier graph of G/H veri�es ω(G/H) = ω(G).

In my projects I generalise these kind of results for groups G endowed
with a large scale notion of non-positive curvature. In particular, I am
considering groups containing a contracting element [5]. This includes
relatively hyperbolic groups, some right angled Artin groups or map-
ping class groups. Not being a global condition, contraction is way less
restrictive than asking for hyperbolicity. Instead, the group G contains
an axis A of an in�nite order element g where the diameters of the
projections on A of every ball that is far away from A are uniformly
bounded (draw a picture).

More recently, I have been interested in small cancellation theory
over acylindrically hyperbolic groups [3].

Bibliography
[1] Y. Antolín, �Counting subgraphs in �tp graphs with symme-

try�, Math. Proc. Cambridge Philos. Soc. 170 (2021), no. 2,
327�353.

[2] G. Arzhantseva & I.G. Lysenok, �Growth tightness for word
hyperbolic groups�, Math. Z. 241 (2002), no. 3, 597�611.

[3] R. Coulon, �Théorie de la petite simpli�cation: une approche
géométrique�, Astérisque No. 380, Séminaire Bourbaki. Vol.
2014/2015 (2016), Exp. No. 1089, 1�33.



Research Statements 89

[4] R. Gitik & E. Rips, �On growth of double cosets in hyper-
bolic groups�, Internat. J. Algebra Comput. 30 (2020), no.
6, 1161�1166.

[5] A. Sisto, �Contracting elements and random walks�,` J. Reine
Angew. Math. 742 (2018), 79�114.



90 Young Geometric Group Theory X

Elyasheev Leibtag
Weizmann Institute of Science
PhD. Advisor: Uri Bader.

Algebraic dynamics

I am interested in understanding dynamical properties of groups with
algebraic nature, such as algebraic groups and groups of automorphism
of buildings and symmetric spaces. Currently I am interested in alge-
braic group over the complex p-adic �eld (Cp). These groups have rich
algebraic structure and yet they not locally compact, I �nd it interest-
ing to study the geometric and dynamic nature of these groups.
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Describing solutions to group equations using languages

I am a PhD student of Laura Ciobanu, currently working on describ-
ing solutions to equations in groups using formal languages. Formally,
an equation in a group G is an element ω ∈ G ∗ FV , where FV is the
free group on a �nite set V , called the set of variables. A solution is
any homomorphism φ : G ∗ FV → G that �xes G pointwise, and such
that (ω)φ = 1. This can be thought of as replacing the variables with
elements of G.
In 2016 Ciobanu, Diekert and Elder proved that solutions to systems

of equations in free groups can be expressed using EDT0L languages
[1], which also gave bounds on the amount of memory needed to solve
certain decision problems. The use of EDT0L languages to describe so-
lutions has been successfully used in a variety of other classes of groups.
At the moment, I am working on showing that the class of groups where
equations can be written using EDT0L languages is closed under var-
ious group extensions. Using this, I hope to show that dihedral Artin
groups are amongst this class of groups.
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Cohomology of classifying spaces for families of subgroups

Let G be a (discrete) group and F be a family of subgroups of G
(e.g. the family FIN consisting of all �nite subgroups, or AME of
all amenable subgroups). A model for the classifying space EFG is a
G-CW-complex X such that for a subgroup H ⊂ G the �xed-point set
XH is contractible if H ∈ F and empty otherwise. Especially EFING
is of great importance in geometric group theory, e.g., for right-angled
Coxeter groups a model is given by the Davis complex, for hyperbolic
groups by the Rips complex, for mapping class groups by Teichmüller
space, for Out(Fn) by Culler�Vogtmann outer space, etc.
The (G-equivariant) cohomology of such classifying spaces is widely

studied due to their appearance in the Isomorphism Conjectures of
Baum�Connes and Farrell�Jones. We have carried out computations
for right-angled Coxeter and Artin groups, and more generally for graph
products, see [1].
I have studied the bounded cohomology of classifying spaces for fam-

ilies, which can be viewed as a relative version of bounded cohomol-
ogy for groups. Classical results for bounded cohomology such as the
characterization of amenable groups and of hyperbolic groups admit
natural generalizations to the relative setting for relatively amenable
groups and relatively hyperbolic groups, see [3].
More recently, I have become interested in categorical invariants of

groups G such as the Lusternik�Schnirelmann category, Farber's topo-
logical complexity, and the amenable category. These integer valued
invariants are usually de�ned in terms of open covers of BG, but they
can alternatively be expressed via a canonical G-map EG → EFG.
While these invariants are di�cult to compute in general, considering
the induced map on cohomology yields a lower bound which can be
more accessible. This point of view has enabled us to carry out some
new computations, e.g., for toral relatively hyperbolic groups, see [2].
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SUBGROUPS OF DIRECT PRODUCTS OF RAAGS

Since the 60's it is known that �nitely generated subgroups of the di-
rect product of non-abelian free groups are very complex, and in partic-
ular, most algorithmic problems are undecidable. However, Baumslag
and Roseblade proved in [1] that �nitely presented subgroups of the
direct product of two free groups have a very tame structure: they are
virtually the direct product of two free groups. The study of subgroups
of type FPn(Q) and of �nitely presented subgroups of the direct prod-
uct of arbitrarily many free groups (and more generally, limit groups
over free groups) was conducted by M.R. Bridson, J. Howie, C.F. Miller
and H. Short in a series of papers that culminated in [2] and [3], where
the authors prove that these subgroups also have a tame structure and
that the main algorithmic problems are decidable.
Right-angled Artin groups (RAAGs) are de�ned by presentations

where the relations are commutation of some pairs of generators and so
the class of RAAGs extends the class of �nitely generated free groups.
In view of the previous results about subgroups of direct products of
free groups, my research is focused on describing the structure of �nitely
presented subgroups of the direct product of (limit groups over) coher-
ent RAAGs, and at showing that the main algorithmic problems are
decidable for this class.
In [5], this work is carried over for Droms RAAGs, that is, RAAGs

whose �nitely generated subgroups are again RAAGs. It is shown
that the results from [2] and [3] about subgroups of direct products of
limit groups over free groups may be generalized to subgroups of direct
products of limit groups over Droms RAAGs. Then, in [4], Baumslag
and Rosedable's result for free groups is generalized to the class of
2-dimensional coherents RAAGs.
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Lp-cohomology and buildings

I am a �rst year PhD student under the supervision of Bertrand
Rémy and Marc Bourdon, my thesis is about Lp-cohomology of a�ne
buildings and applications to geometric group theory. I am interested
in geometric or group theoretic structures associated to buildings, such
as symmetric spaces, Coxeter groups, algebraic groups or Kac-Moody
groups. On the cohomology side, I mostly focus on L2-invariants and
Lp-cohomology, though I am also interested on property (T ) and strong
property (T ).
My master thesis (under the supervision of Bertrand Rémy) is on

the same spirit: computation of cohomological invariants with appli-
cations in geometric group theory. More precisely, I studied L2-Betti
numbers of groups acting on buildings (using results due to Dymara
and Januszkiewicz) and used them to exhibit an in�nite family of
�nitely presented simple groups that lie in di�erent measure equiva-
lence classes. This thesis became later my �rst preprint.
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RESEARCH STATEMENT

I am a second year PhD student at Vanderbilt University and I am
interested in low dimensional topology and geometric group theory; in
particular, I enjoy thinking about mapping class groups, and Teich-
müller space. My advisor is Dr. Spencer Dowdall. I am currently
reading Farb and Margalit's Primer on Mapping Class Groups1, and
some papers of Bestvina-Bromberg-Fujiwara2 and Masur-Minksy3, in
addition to some others.
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The combinatorics of hyperbolic Coxeter groups

In the context of my PhD studies I focus on re�ection length in
non-a�ne in�nite Coxeter groups as well as on constructing Gromov
hyperbolic Coxeter groups of arbitrarily large virtual cohomological
dimension via the basic construction.

For a Coxeter group W with generating set S the conjugates of the
generators are called re�ections. For an element w ∈ W the mini-
mal number lR(w) of re�ections ri that are needed to express w (e.g.
w = r1 · · · rk) is called re�ection length. It is known from a result of
Duszenko that re�ection length as a function lR : W → N is bounded
on a�ne and unbounded on hyperbolic Coxeter groups (see [1]). Fur-
ther there exits a formula to compute re�ection length in the a�ne case
(see [2]).
The objective of my current research is to study the asymptotic be-
haviour of lR and �nd repetitive patterns and prove structural results
about the re�ection length function in the hyperbolic setting: Even
though the re�ection length is unbounded, it already seems di�cult
not only to compute it but also to �nd elements with great re�ection
length in hyperbolic Coxeter groups.

For a simplicial complex X and a group G the basic construction
gives us a space U(G,X) withG-action by pasting together copies ofX.
This was used in [3] to construct simplicial complexes that encode right
angled Coxeter groups of every virtual cohomological dimension. The
numbers of vertices and top dimensional simplices of the constructed
complexes grow strikingly fast and I am interested in a more e�cient
construction in these terms.
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RESEARCH STATEMENT

My research is in geometric group theory and low dimensional topol-
ogy. I work with hyperbolic groups acting on trees and what can be
seen on the boundary. Through graphs of groups, combinatorics of a
group and the topology of the space it acts on are connected, as de-
scribed by Scott and Wall1. Such combinatorics are also exhibited for
hyperbolic groups on the boundary of the space2. For visualization in
hyperbolic spaces, I developed programs to draw Bass-Serre trees and
limit sets for Kleinian groups in Mathematica, inspired by the work of
Curtis McMullen.
I am recently working on relatively hyperbolic groups and 3-manifold

theory. In particular, I want to learn how cut points show the split-
tings of relatively hyperbolic groups3 based on the understanding and
visualizations of hyperbolic groups. Current work in representing 3-
manifolds in virtual reality4, which relies on Thurston's geometrization
conjecture, also excites me with its power to explain group theory with
geometry.
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I hope to graduate by the end of June. I wrote my master's thesis
under supervision of Pierre-Emmanuel Caprace. There, I investigated
some aspects of Kazhdan's property (T). I plan on starting a PhD next
year. The research project is brie�y described below.

BOUNDARY REPRESENTATIONS OF HYPERBOLIC
GROUPS

Consider a group G acting on a metric space X. Under suitable
conditions, there is a natural compacti�cation X̄ = X ∪ ∂X, such that
G acts on the boundary ∂X. Moreover, this boundary can be endowed
with a G-invariant measure µ, which in turn yields a unitary repre-
sentation of G on L2(X,µ), which we call the boundary representation.
We are interested in the following problems.

• Given two metric spaces X1 and X2, �nd necessary and su�-
cient conditions for theG-measure spaces (∂X1, µ1) and (∂X2, µ2)
to be equivalent.
• When G is hyperbolic, investigate boundary representations.
• Use explicit boundary representations to �nd upper bounds on
the Kazhdan constant of G.
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Automorphisms of free products of �nite and cyclic groups,
among other things

I just �nished my �rst year as a postdoc at Rutgers, where I am
working with Lee Mosher. Before this I was a PhD student at Tufts
University, where my advisor was Kim Ruane. I like thinking about
outer automorphism groups of free groups and free products, mapping
class groups (of �nite- and in�nite-type surfaces), graphs of groups,
orbifolds, cube complexes and more. Here are some things I am cur-
rently thinking about.
Lee Mosher and I are revisiting a theorem of Handel�Mosher [4] and

Bridson�Vogtmann [2] that says that the Dehn function of the outer
automorphism group of a free group of rank n is exponential when
n ≥ 3. We �nd a new proof of an exponential lower bound with the
following nice feature missing from the original: it readily generalizes
to the outer automorphism of a free product of n �nite groups and k
in�nite cyclic groups where n ≥ 2 and n+ 2k ≥ 5. Lee's PhD student
Alex Lowen supplies the exponential upper bound. For n ≥ 2, there are
two cases not covered by our theorem and for whom the Dehn function
is not already known: the case where n = 4 and k = 0 and the case
where n = 2 and k = 1. In these cases, we are investigating whether the
outer automorphism group might be hierarchically hyperbolic, which
would imply a quadratic Dehn function.
I have another project involving outer automorphism groups of free

products of �nite and cyclic groups. These groups are precisely the
groups for which the spine of the associated Guirardel�Levitt Outer
Space [3] is locally �nite; thus it is interesting to compare and contrast
these groups to Out(Fn) and their Outer Spaces to Culler�Vogtmann
Outer Space. I am interested in generalizing a result of Vogtmann [5],
which says that Out(Fn) is simply-connected at in�nity for n ≥ 5. The
idea is to use the combinatorics of the spine of Outer Space to push
paths and homotopies o� to in�nity. An eventual goal of mine further
in this direction is to generalize a theorem of Bestvina�Feighn [1] that
says that Out(Fn) is a virtual duality group.
Let me mention one project not immediately connected with outer

automorphisms of free groups. It is a folk theorem that the mapping
class group of an orientable 2-orbifold whose underlying space is a �nite-
type surface and whose singular locus is a �nite set of cone points is
equal to the subgroup of the mapping class group of the underlying
surface where the singular locus is marked consisting of those mapping
classes that permute cone points of a given order. On the other hand,
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multiple con�icting de�nitions of a map of orbifolds exist, and the most
compelling de�nitions are quite complicated. With Tyrone Ghaswala,
it is my goal to put this folk theorem on a rigorous footing. Along
the way we investigate some representations of braid groups into the
automorphism group of a free group.
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Suraj Krishna M S
Tata Institute of Fundamental Research

Exploring nonpositive curvature in groups

I work mainly with CAT(0) cube complexes, (relatively) hyperbolic
groups and strongly shortcut groups.

During my PhD, I developed time-bound algorithms to compute the
Grushko [1] and JSJ decompositions [2] of graphs of free groups with
cyclic edge groups (in the one-ended hyperbolic case for the latter de-
composition).

In [3], François Dahmani and I showed that mapping tori of torsion-
free hyperbolic groups are hyperbolic relative to the mapping tori of
maximal polynomially growing subgroups. More recently, Nima Hoda
and I showed that relatively hyperbolic groups with strongly shortcut
parabolic subgroups are strongly shortcut [4].

Currently, I am thinking about relative cubulations of relatively hy-
perbolic groups, random walks on relatively hyperbolic groups and
combination theorems.
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Biao MA
Universitè Côte d'Azur
PHD ADVISOR: Indira Chatterji

RESEARCH INTERESTS

I have just �nished my PhD thesis under the supervision of Indira
Chatterji. I am interested in mapping class groups, Teichmuller theory,
hyperbolic geometry and lattices in Lie groups.

I am working on unitary representations of mapping class groups.
In the �rst preprint, I investigated almost invariant vectors of a family
of unitary representations of mapping class groups [1]. In the second
preprint, I investigated boundary representations of mapping class
groups and show that these representations are irreducible [2].

I also have great interests in geometric group theory and I would be
very happy to discuss math with you.
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Alexis Marchand
University of Cambridge
PhD Advisor: Henry Wilton (Cambridge)
Master's Advisor: François Dahmani (Grenoble)

Free representations of outer automorphism groups of free
products

I am currently a Master's student at Institut Fourier, Grenoble, and
am about to start a PhD at the University of Cambridge. The research I
have undertaken for my Master's thesis focuses on outer automorphism
groups of free products. The aim is, given a free product G, to con-
struct embeddings of Out(G) into Out (Fm) for some m. The method
follows work by Bridson and Vogtmann [1], in which they study the
existence of embeddings Out (Fn) ↪→ Out (Fm) for some values of n
and m by interpreting Out (Fn) as the group of homotopy equivalences
of a graph X of genus n, and by lifting homotopy equivalences of X to
a characteristic abelian cover X̂ of genus m.
Analogously, one may de�ne homotopy equivalences for graphs of

groups in such a way that, if G is a free product of groups, then its
outer automorphism group Out(G) may be interpreted as the group of
homotopy equivalences of a graph of groups associated to a Grushko
decomposition of G. This allows one to extend the method of Bridson
and Vogtmann to the case of free products. For instance, we are able
to prove that, if G = Fk ∗ Gk+1 ∗ · · · ∗ Gn, with Fk free of rank k, Gi

�nite abelian such that |Gi| is coprime with n− 1, then there exists an
embedding Out(G) ↪→ Out (Fm) for some m.
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Anna Franziska Michael
Otto-von-Guericke-University Magdeburg
PhD. Advisor: Prof. Petra Schwer

Algorithmic Properties Of Coxeter Shadows

I recently took up a new employment at the University of Magde-
burg as a fellow of the MathCoRe research training group, where I will
work on a PhD thesis under supervision of Petra Schwer and Volker
Kaibel. To dive into the topic �rst, I've been reading The Geometry
And Topology Of Coxeter Groups by M. W. Davis [1] and Buildings by
K. S. Brown [2].
Now, my �rst research project is about Shadows in a�ne Coxeter

groups, which you can construct as follows: Choose an orientation for
your Coxeter complex, so that for ever hyperplane you get exactly
one corresponding positive and negative half space. Consider a gallery
γ = (c0, p1, c1, . . . , pn, cn) with alcoves ci and separating panels pi. Now
you can fold γ at pi by re�ecting the remaining part of the gallery
(ci, pi+1, ci+1, . . . , pn, cn) on the hyperplane hp ⊃ pi to get a new gallery
with a di�erent group element at the end. Collecting all the group
elements you can construct from γ by folding it onto positive half spaces
resp. to your chosen orientation, you get the shadow of γ (with respect
to your orientation).
Graeber and Schwer already showed in [3], that there are more ef-

�cient algorithms to compute a Shadow than just trying out every
possible positive folding of a gallery γ. My research tries to �nd out
more about algorithmic properties of these Shadows.
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Francesco Milizia
A�liation: Scuola Normale Superiore
PhD advisor: Roberto Frigerio

`∞-cohomology ♣♣♣ Gromov's conjecture about simplicial
volume and Euler characteristic

I am a �rst-year Phd student in Pisa, where I also pursued my bach-
elor's and master's degrees. In the past months I have studied a rather
exotic cohomology theory called `∞-cohomology1, introduced in the 90s
by Gersten [1]. I will not write extensively about it here (I am not even
writing the de�nition) but, of course, I would be very happy to talk
about it with anyone who is interested. Very soon, I will also upload
on arXiv a survey on the topic. Here, let me just point out some
connections between `∞-cohomology and geometric group theory.

• `∞-cohomology can be used to obtain lower bounds for the Dehn
function of �nitely presented groups.
• `∞-cohomology recognizes hyperbolic and amenable groups.
• `∞-cohomology detects whether a central extension 1 → Z →
E → G → 1 of �nitely generated groups is quasi-isometrically
trivial [2]. The central extension is quasi-isometrically trivial
if there is a quasi-isometry between E and Z × G which is
compatible (up to bounded error) with the projection to G.

I am currently moving on to a di�erent topic. Again, I will not
go into much detail. Let M be an oriented, closed and connected
smooth manifold of dimension n. The simplicial volume of M , which
is denoted by ‖M‖, is a non-negative real number that only depends
on the homotopy type of M . It is an interesting invariant, because it
encodes information about the Riemannian metrics that M can carry.
For instance, if M is a hyperbolic manifold, then ‖M‖ = cn · Vol(M),
where the proportionality constant cn only depends on n. The following
conjecture has been put forward by Gromov and is still open.
Conjecture. Suppose that M is aspherical and that ‖M‖ = 0. Then
its Euler characteristic χ(M) vanishes.
My advisor and I would like to investigate the special case in which

M is a non-positively curved Riemannian manifold (in this case, the
Cartan-Hadamard theorem ensures thatM is aspherical). WhenM has
enough negative curvature, its simplicial volume is strictly positive. For
instance, this happens ifM has strictly negative curvature everywhere,
and more in general when the fundamental group of M is hyperbolic
(or even only relatively hyperbolic). On the other hand, it is expected

1A warning for those who know something about bounded cohomology: `∞-co-
homology and bounded cohomology are not the same thing.
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that if M is not su�ciently negatively curved, its Euler characteristic
should vanish for some mysterious (at least for me) reason.
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Lawk Mineh
University of Southampton
PhD. Advisor: Ashot Minasyan

Quasiconvexity in relatively hyperbolic groups

Relatively hyperbolic groups are a generalisation of hyperbolic groups,
containing a broader class of groups. Among these are �nite volume
hyperbolic manifold groups and small cancellation quotients of free
products. The natural subobject of a relatively hyperbolic groups are
its relatively quasiconvex subgroups, which are themselves relatively
hyperbolic in a way that is compatible with the larger group. The link
between the geometry and the algebra of these subgroups is strong,
making them interesting objects of study. My current work involves
investigating separability properties related to relatively quasiconvex
subgroups.
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NAME Dr. Babak Miraftab
AFFILIATION University of Lethbridge

TITLE OF RESEARCH STATEMENT

I am a person who is interested in geometric group theory (also
known as combinatorial group theory) which is is an interdisciplinary
�eld. My past research was about graph-theoretical versions of theo-
rems in GGT and CGT.
For example, in the paper �A Stallings' type theorem for quasi-

transitive graphs�, we have shown that every such graph with more
than one end is a tree amalgamation of two other such graphs. This
can be seen as a graph-theoretical version of Stallings' splitting theorem
for multi-ended �nitely generated groups.
The next interesting topic in GGT is accessibility. For instance we

have shown that a graph G is accessible if and only if every process
of splittings in terms of tree amalgamations stops after �nitely many
steps.
My current research focuses on groups acting on trees and its con-

nection to di�erent types of accessibility.
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Philip Möller
University of Münster
PhD. Advisor: Prof. Dr. Linus Kramer

Semisimple locally compact groups and duality

In [1] and [2] Caprace, Reid and Willis studied totally disconnected
locally compact groups by constructing Boolean lattices inside the
group. This was combined with Stone's Duality theorem and the natu-
ral action of the group on these lattices via conjugation to obtain some
deep results about the topology of the group.
For a topological group these lattices are not always boolean, but

some still form semilattices. This can be used to construct a functor
from the category of topological groups to the category of semilattices.
I want to study this functor as an analog of the Lie functor for Lie-

groups, which is especially powerful for semisimple Lie groups. There-
fore I want to generalize the de�nition of a semisimple Lie group to a
locally compact topological group and hope to use this functor (and its
"cousins") to obtain similar theorems. This could be a way to merge
the theories revolving around connected Lie groups and totally discon-
nected groups adding further information to the structure of (semisim-
ple) locally compact groups. I am currently working on the special case
of compact groups.

Automatic continuity of locally compact groups

This is joint work with Dr. Olga Varghese and Daniel Keppeler. For
this project we are working on automatic continuity results for locally
compact groups, more precisely: Given a discrete group G, a locally
compact group L and an algebraic homomorphism ϕ : L→ G we study
the question what conditions the group G needs to satisfy to ensure
that ϕ is automatically continuous. A strong result in this direction
was proved by Dudley, showing that any group homomorphism from a
locally compact group into a free group is automatically continuous [3].
We are studying this question for "GGT" groups like CAT(0) groups
(see [4]) or more generally metrically injective groups and in particular
Helly groups (ongoing work).
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Ismael Morales López (Graduate student)
Universidad Autónoma de Madrid (UAM)

Extensions of parafree groups

This year I have been learning ring-theoretical tools to study groups.
As an application, in a joint work with Andrei Jaikin-Zapirain we estab-
lish the residual nilpotence of some constructions such as amalgamated
products and HNN extensions. The motivation was to study when the
fundamental group of a graph of groups is parafree (i.e. residual nilpo-
tent and with the same nilpotent genus as some free group). The main
tools involve group ring techniques, L2-Betti numbers and pro-p groups.
Towards my PhD studies, I am more interested in studying topolog-

ical tools: including Bass-Serre theory and Mapping class groups.
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Biswajit Nag
Tata Institute of Fundamental Research, Mumbai

Special Cube Complexes

I am �nishing up my masters' coursework, and have been learning
about special cube complexes with Mahan Mj. Fundamental groups
of special cube complexes embed naturally in right-angled Artin-Tits
groups, and have many separable subgroups. Any local isometry of
special cube complexes can also be �completed� to form an embedding,
and in this sense special cube complexes can be thought of as higher
dimensional generalizations of graphs. Two special cube complexes can
also be amalgamated along a common malnormal locally isometrically
immersed subcomplex to give rise to a further (virtually) special cube
complex.
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Thomas Ng
Technion � Israel Institute of Technology
PhD. Advisor: David Futer

Uniform exponential growth in non-positive curvature

Growth of groups has played a central role in geometric group theory
since the 1950s and 1960s in foundational work of Milnor and Schwarz.
A striking result of Gromov states that groups with polynomial growth
are nilpotent up to �nite index. Shortly after proving this result Gro-
mov asked whether the exponential growth rate can be bound uniformly
over all generating sets for groups with exponential growth. This ques-
tion was answered in the negative for �nitely generated groups by Wil-
son, but remains open for �nitely presented groups. There is signi�-
cant evidence that Gromov's questions may hold for �nitely presented
groups acting on non-positively curved metric spaces. I am particularly
interested in understanding which acylindrically hyperbolic groups are
known to have uniform exponential growth. For example, my work
Abbott, Gupta, Petyt, and Spriano demonstrates that non-virtually
abelian groups acting on geometrically CAT(0) cube complexes with
factor systems have uniform exponential growth. In fact, the setting
of non-positive curvature can often be leveraged to upgrade techniques
used to prove uniform exponential growth. In this direction, my work
with Gupta and Jankiewicz as well as with Kropholler and Lyman es-
tablish quantitative subgroup alternatives for groups acting without
global �xed point on square complexes and also automorphism groups
of one-ended hyperbolic groups.
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Francisco Nicolás
University of Strasbourg
Ph.D. advisor: Thomas Delzant and Pierre Py

Finitely generated normal subgroups of Kähler groups

I am interested in geometric group theory, complex geometry, and the
interactions between them. In particular I am interested in Kähler
groups, groups acting on trees, and groups with exotic �niteness prop-
erties.
A group is called a Kähler group if it can be realized as the fundamen-

tal group of a compact Kähler manifold. There are many constraints
for an in�nite group to be Kähler. For instance, it must be one-ended
and the rank of its Abelianization must be even. There are two types
of results in the study of Kähler groups: there are some negative results
which say that certain families of groups do not contain Kähler groups
and there are positive results, i.e. some constructions of Kähler groups
with interesting properties. The work I realized during my PhD was
focused on the study of �nitely generated normal subgroups of Kähler
groups, and it contributes to these two lines of research.

1. Kähler groups and finitely generated groups acting

on trees

In [5], we studied Kähler groups that admit as a normal subgroup
a �nitely generated group G acting on a tree. We proved that under
certain conditions the Kähler group is virtually a direct product where
one of the factors is the group G. Moreover, the group G is virtually the
fundamental group of a closed oriented surface of genus greater or equal
than 2. This result allows us to give restrictions on normal subgroups
of Kähler groups which are amalgamated products or HNN extensions.
For instance, we obtain that a group that splits as a non-trivial free
product A ∗ B with A and B indecomposable and not in�nite cyclic,
cannot be embedded as a normal subgroup into a Kähler group. The
main ingredient of this work is a classical result of Gromov and Schoen
about Kähler groups acting on trees (see [3]).

2. Kähler groups with exotic finiteness properties

In joint work with Pierre Py [4], we constructed new examples of
Kähler groups which occur as normal subgroups of previously known
Kähler groups. The new examples that occur in this way are related to
�niteness properties in group theory. Our main tool to construct these
examples is the study of irrational pencils with isolated critical points
on compact aspherical complex manifolds.
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Josiah Oh
Ohio State University
Advisor: Jean-François Lafont

Quasi-isometric rigidity of lattice products

Schwartz proved quasi-isometric rigidity for non-uniform lattices in
rank one Lie groups. Frigerio�Lafont�Sisto later proved QI rigidity
for products π1(M)× Zd where M is a complete, non-compact, �nite-
volume real hyperbolic manifold of dimension at least 3. My research
is on the QI rigidity for products Λ × L, where Λ is a non-uniform
lattice in a rank one Lie group and L is a lattice in a simply connected
nilpotent Lie group. Speci�cally, any �nitely generated group quasi-
isometric to such a product is, up to some �nite noise, an extension
of a non-uniform rank one lattice by a nilpotent lattice. Under some
extra hypotheses, this extension is (virtually) nilcentral, a notion which
generalizes central extensions.
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Oluwadamilola Olorode
Cornell University

Research Statement

I am broadly interested in algebra and topology, but I have been
recently introduced to Geometric Group Theory and I am excited to
hear more about this area of mathematics.



Research Statements 119

Hanna Oppelmayer
TU Graz

Research interests

Random walks on groups, Poisson boundaries, stationary actions,
ergodic theory, entropy, ...
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JOSIAH OWENS
TEXAS A&M UNIVERSITY

RESEARCH INTERESTS AND BACKGROUND

As a �rst year PhD student, my research experience is rather mod-
est and I have yet to choose a research topic to pursue fully. I am
interested in areas of group theory, topology, and measure theory that
pertain to the study of dynamical systems as well as associated top-
ics including geometric and combinatorial methods in group theory,
measured group theory, actions on rooted trees, self-similar groups and
automata theory, amenability, and ergodic theory.
The �nal project for my master's degree was a presentation on an

ergodic theoretic proof of Szemerédi's theorem, based on the proof of
Furstenberg [1]. Ergodic theoretic applications towards number theory
remain as an outlier of my mathematical interests. I have since stud-
ied topics of amenability [2], actions on rooted trees [3], and subgroup
structure of lamplighter groups [4]. I have also done some research
under the supervision of Rostislav Grigorchuk on convergence of sub-
groups in generalized lamplighter groups as well as a survey of prop-
erties of several non-amenable automaton groups possessing amenable
actions, 〈C2 ∗ C2 ∗ C2,Z〉 and 〈F3,Z〉, which are constructed as in [5].
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Gabriel Pallier
Université de Fribourg, Département de mathématiques

Large-scale geometry of Lie groups

I am a 2nd year postdoc in Fribourg University (Switzerland), with
E. Le Donne. The following describes brie�y my research projects, so
far and in progress, around the large-scale geometry of Lie groups.

Quasiisometries have been an important theme in the modern devel-
opment of geometric group theory. In my work, I am primarily inter-
ested in quasiisometries of (or between) connected Lie groups equipped
with proper geodesic distances.
Many quasi-isometric invariants for such a group G are known and

studied [4]. They include the asymptotic cones Cone(G), that are in-
formally �pictures of the group as seen from the in�nity�, with all the
information coming along, e.g. π1(Cone(G)), but also the growth and
the �lling invariants, among which the Dehn function δG, which mea-
sures the di�culty to �ll loops of given length in the group in an as-
ymptotic way. Through what they retain on the large-scale geometry
of groups, those invariants are sometimes related; for instance if a Lie
group G has simply connected asymptotic cones, then δG is bounded
by a polynomial function. Further, if asymptotic cones are additionaly
locally compact then one can bound from above the degree of growth
of δG [3], and even estimate exactly the growth [9], from the knowledge
of a single asymptotic cone.
Quasiisometries are not the only maps that preserve all the features

of asymptotic cones, though: so do sublinear bilipschitz equivalences
(SBE) [1]. In short, sublinear bilipschitz equivalence are obtained by
replacing the additive bounds of quasiisometry by a sublinear function
of the distance to basepoint. These equivalences occur quite naturally
between pairs of nonisomorphic Lie groups provided that these have
su�ciently close algebraic structure; they preserve some coarse struc-
tures, though rather unusual ones [2,8].
The classi�cation of Lie groups up to sublinear bilipschitz equiva-

lence is necessarily less �ne than what we know or expect from the
QI classi�cation; nevertheless some invariants can be derived from
quasiconformal analysis (in a generalized sense) on the boundaries of
Gromov-hyperbolic Lie groups [6,7]. With such techniques, some par-
tial progress can be expected towards the classi�cations of hyperbolic
Lie groups up to QI and SBE, as well as an improved understanding
of the large-scale geometry of such groups. On the polynomial growth
side, in work triggered by this circle of ideas, following Cornulier and in
joint work with C. Llosa Isenrich and R. Tessera, we exhibited pairs of
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(nilpotent) Lie groups that have biLipschitz simply connected locally
compact asymptotic cones, but di�erent Dehn functions [5].
I currently follow two research projects. The �rst is a collaboration

with E. Le Donne and X. Xie, in which we attempt to characterize
the connected Lie groups where all te left-invariant proper geodesic
distances are roughly similar. The second is a work in progress with
Y. Qing, in which we attempt to compare sublinear bilipschitz equiva-
lences and sublinear Morse boundaries, introduced in [10].
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BOUNDARIES OF THE HANDLEBODY GROUP

I am a �rst year PhD student with focus on Geometric Group Theory
and Low-Dimensional Topology. My project concerns the handlebody
group, i.e. the mapping class group of a 3-dimensional handlebody.
More precisely, my goal is to better understand the (connectivity prop-
erties of) boundaries (in some sense) associated to the handlebody
group.

Generally speaking, I am interested in learning more about virtually
every area of Mathematics and I am particularly happy learning about
surprising connections between them.
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Rationality of Boundaries

The rational group R (as de�ned by Grigorchuk, Nekrashevych
and Sushchanski�i) is the group of all homeomorphisms of the set of all
in�nite binary sequences {0, 1}ω that can be implemented by asynchro-
nous transducers.
There are many groups that embed in R, an example is the class of

hyperbolic groups. Belk, Bleak and Matucci proved that a hyper-
bolic group G is rational exploiting the action of G on the Gromov
boundary ∂G, the quotient map from the horofunction boundary
∂hG onto ∂G and introducing the notion of tree of atoms (a tree of
subsets of G) to codify horofunctions.
Currently I'm studying the gluing relation induced by the quotient

map on ∂hG using the tree of atoms. In particular, I proved that
in some sense horofunctions behave like geodesic rays and now I'm
working on a way to predict metric and topological properties of the
Gromov boundary. Moreover, I'm trying to understand if the gluing
relation has some regularity (in the sense of machines that can represent
them).
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Classes of groups acting on rooted trees

There are many interesting �nitely generated subgroups of the au-
tomorphism group Aut(T ) of a rooted regular tree, starting with the
Grigorchuk group and the Gupta�Sidki p-groups, which have long been
reinterpreted as special cases within growing families of generalisations,
e.g. the class of spinal groups. However, in many cases it is still unclear
which properties of the original groups (like being branch, just-in�nity,
being periodic) carry over to which generalised groups. Also many in-
variants, like the Hausdor� dimension or even the isomorphism type,
have not been calculated yet. Part of my research concerns with steps
towards a better understanding of how the input data of spinal groups
determine their structure: In [1], the isomorphism problem for GGS
groups on p-regular rooted trees is solved, while [2] gives new condi-
tions for certain spinal groups to be periodic.
In [3], together with Karthika Rajeev, a di�erent direction is ex-

plored. We recognise the Basilica group B ≤ Aut(T ) as the image
of the binary odometer under a certain transformative operation, that
we thus called the Basilica operation. This does not only establish
a connexion between two well-studied groups inside Aut(T ), but al-
lows to adopt techniques developed for the Basilica group to various
other groups, some new, some that have already been described. I am
interested not only in further developing the theory of the Basilica op-
eration, but also in considering similar constructions aimed at building
groups with di�erent properties.
Aside from groups acting on rooted trees I am also interested in the

representation growth of p-adic analytic groups and groups with the
Magnus property, i.e. groups where two elements generating the same
normal subgroup are either conjugate or inverse-conjugate.
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Coarse geometry of hierarchically hyperbolic spaces

I am a third year PhD student, supervised by Mark Hagen. I am
interested in mapping class groups, cubical groups, and generalisations
of hyperbolicity that allow one to study both simultaneously.
One such generalisation is that of hierarchical hyperbolicity. Much

of my work so far has taken place in this setting, which provides a
combinatorial axiomatisation of the subsurface projection machinery
used to study mapping class groups, and which has proven itself to
be rather powerful in the last few years. Davide Spriano and I found
constraints on the combinatorial structure akin to the Caprace�Sageev
decomposition theorem for CAT(0) cube complexes, and used them to
show that being an HHG is not preserved by �nite extensions [CITE].
I am also interested in how various notions of nonpositive curvature

interact with one another. In joint work with Thomas Haettel and
Nima Hoda [CITE], we built a bridge between hierarchically hyper-
bolic spaces and injective metric spaces, with consequences for mapping
class groups. Injective spaces were introduced to geometric group the-
ory in a nice paper of Lang [CITE], and can be thought of as an `∞

version of CAT(0) spaces. I would like to better understand what can
be said about groups that act on them.
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REPRESENTATION GROWTH OF SEMISIMPLE
PROFINITE GROUPS

and
REPRESENTATION GROWTH OVER FINITE FIELDS

OF BAUMSLAG-SOLITAR GROUPS

I am currently working on two di�erent projects.
The �rst one is about representations of semisimple pro�nite groups.

A pro�nite group is called semisimple if it is the Cartesian product
of �nite simple groups. The representation growth of such groups is
polynomial under certain restrictions. My work was motivated by some
partial results of Klopsch and Garcia-Rodriguez documented in Garcia-
Rodriguez' PhD thesis (2016). They proved that for every positive
α ∈ R, there is a semisimple pro�nite group that is the Cartesian
product of simple groups of Lie type and that has polynomial rep-
resentation growth of degree α. This was in turn motivated by the
results of Kassabov and Nikolov (2006) that proved the analogue re-
sult for products of alternating groups. Furthermore, Kassabov and
Nikolov showed that �nitely generated semisimple pro�nite groups are
pro�nite completions of �nitely generated discrete groups if and only
if they satisfy some natural conditions. In particular, the groups that
they constructed are indeed pro�nite completions while instead, the
groups constructed by Klopsch and Garcia-Rodriguez, are not. With
my work, I proved that for every α ∈ R>0, there is a semisimple pro�-
nite group that is the product of simple groups of Lie type, that has
polynomial representation growth of degree α, and that is a pro�nite
completion.
The second project is a joined project with de las Heras. We study

absolute irreducible representations over �nite �elds of Baumslag�Solitar
groups. This work was inspired by the work of Mozgovoy and Reineke
(2015), that studied the absolute representation growth over �nite �elds
of free groups. They found some polynomials that describe this growth
and, moreover, they related those polynomials to the formula describ-
ing the subgroup growth. However, the methods they are using, do not
seem to apply to other kind of groups such as Baumslag-Solitar groups.
These groups are not free, but they are somehow close to being so, as
they satisfy just one relation. Since we know the explicit formula of the
subgroup growth of Baumslag-Solitar groups (2005), we aim to �nd an
explicit formula of the absolute irreducible representation growth over
�nite �elds of Baumslag�Solitar groups and relate it to the one of their
subgroup growth as done by Mozgovoy and Reineke.
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Applications of the Classi�cation of �nite simple groups

My background is in the study of �nite simple groups, but in re-
cent years my research interests have turned towards geometric group
theory. In particular, questions related to (�nite simple) quotients of
�interesting groups� such as Aut(Fn) or mapping class groups.
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Matteo Pintonello

I am a student at the University of the Basque Country. My main
interests lie in pro�nite groups. I study conciseness of group words, a
theory regarding whether we can obtain �niteness results on the verbal
subgroups w(G) assuming that the set of values that a word w takes
are �nite or countable.
Recently I have been studying application of pro�nite methods to Trees
and Complexes.
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Minimal Volume Entropy

I am a third year PhD student working under the supervision of
Enrico Leuzinger. My research for my PhD project is focused on volume
entropy of various structures.
The volume entropy of a compact Riemannian manifold is the expo-

nential growth rate of the volume of a metric ball in its universal cover.
This is an asymptotic invariant, not depending on the base point of the
ball. S.Sabourau [1] gives an interesting characterization, by which it
coincides with the exponential growth rate of the number of closed
paths of bounded length up to homotopy.
It is of great interest due to its relation to the fundamental group and

systoles of a Manifold [2]. For this purpose one is especially interested
in the metric minimizing the volume entropy of a given manifold under
all volume one metrics.
Moreover, there is a connection with the topological entropy of the

geodesic �ow which is a measure of the complexity of a dynamical
system. A. Manning [3] showed that the topological entropy is an
upper bound for the volume entropy and these values coincide if the
manifold has non-positive sectional curvature.
Besides, S. Lim [4] adapted this de�nition to graphs and received

a strict lower bound for the volume entropy of a given graph for a
volume one metric. Moreover, she states a length assignment of the
edges, realizing it.
In my research I try to extend the de�nitions among others to carte-

sian products of graphs, simplicial complexes and buildings. Further-
more, I am interested in lower bounds on the volume entropy under
certain restrictions.
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Karthika Rajeev
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My research focuses on geometric group theory and asymptotic group
theory. I am mainly interested in in�nite and pro�nite groups. My ex-
pertise revolves around groups acting on rooted trees. An underlying
theme in my research is to establish links between the algebraic prop-
erties of certain groups and the properties of their action on a given
topological space. The central theme of my ongoing PhD is the study of
asymptotic distribution of �nite-dimensional irreducible complex rep-
resentations of groups acting on rooted trees by using tools from the
character theory of �nite groups.
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Classifying maximal 1-systems on a torus with two holes

Let S be a torus with two punctures. De�ne an arc to be a path
on S such that each end of the path goes into one of the punctures.
A 1-system is a collection of non-trivial, pairwise non-homotopic arcs
such that no pair of arcs intersects more than once. I am working
on enumerating, up to homeomorphism and homotopy, the possible
maximal 1-systems in this particular case of a torus with two punctures.
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José Andrés Rodríguez-Migueles
LMU München

Complements of periodic orbits of the geodesic �ow

Finding e�ective and computable connections between the geometry
and topology of some link complements in the projective unit tangent
bundle of a given hyperbolic surface, some examples of these links come
from periodic orbits of the geodesic �ow.
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Right-angled Artin groups and their kernels

Right-angled Artin groups (RAAGs) are groups with a very simple
presentation: the only relations are commutators between generators.
This information can be encoded in a graph with vertices given by the
generators, and in which two vertices are connected by an edge if and
only if the corresponding generators commute. Examples include free
abelian groups (complete graphs) and free groups (totally disconnected
graphs).
Despite their simple de�nition, RAAGs turn out to admit a rich

class of subgroups. I am currently interested in studying subgroups
of RAAGs known as Artin kernels. These are normal subgroups of
a RAAG obtained as kernels of homomorphisms to Z. A special ex-
ample of Artin kernel is given by the Bestvina-Brady subgroup of the
RAAG, which has been studied in [2] as an example of group with
exotic �niteness properties.
In [1] we have studied some splittings of general Artin kernels. In

the case of RAAGs associated to a block graph, we have obtained an
explicit rank formula for the Artin kernels, and we used it to explore
the space of �brations of the RAAG.
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Matrices, Thompson groups, and 3-manifolds

I am a postdoc in the Geometry Group of Petra Schwer in Magde-
burg. I got into combinatorial and geometric group theory because I
am fond of problems in geometry and topology that are motivated by
� or can be solved with � algebra or combinatorics, and vice-versa. In
particular, I enjoy combinatorial and topological methods and aspects
of groups and spaces related to them.
Groups that I like include matrix groups � e.g., arithmetic lat-

tices such as SLn(Z[1/p]), PSp2n(Fq[t, t−1]) or matrices over interesting
domains such as ( ∗ ∗0 ∗ ) ≤ GL2(Z[t, t−1, (t + 1)−1]) � but also nonlin-
ear creatures such as R. Thompson's groups and their relatives. Ob-
jects like buildings, coset complexes, and low-dimensional manifolds
are among the spaces I am interested in.
More recently I have been investigating algorithmic problems involv-

ing braided Thompson groups and/or 3-manifolds, and Reidemeister
classes for groups with interesting geometric features. Regarding the
former, Stefan Friedl, Lars Munser, José Pedro Quintanilha and I es-
tablished algorithmic recognition of spatial graphs [1], i.e., piecewise-
linear graphs embedded in 3-space. As for Reidemeister classes, Paula
Macedo Lins de Araujo and I developed tools [2] to check whether solu-
ble matrix groups have the so-called property R∞ � this is yet another
group-theoretic property arising from the study of �xed points, and
says that all automorphisms of the given group have in�nitely many
twisted conjugacy classes. Later on we teamed up with Altair San-
tos de Oliveira-Tosti [3] and showed, using the BNS Σ-invariants, that
some members of the family of Thompson groups also exhibit R∞.
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Research Statement

I am a PhD student of Doron Puder at Tel-Aviv University. The
topics I am interested in are word maps and word measures. A brief
introduction to word maps: Fix a word w in the free group Fk. For
every group G, the word w induces a map Gk → G by substitution.
For example, the commutator word w = [a, b] ∈ F2 de�nes a map
G×G→ G by mapping (x, y) 7→ [x, y]. Many natural questions arise
in this context in the attempt to relate the algebraic properties of the
word w to the properties of the map it induces. If the group G is �nite
or compact, it is naturally equipped with a uniform/Haar probability
measure on Gk, and the word map induced by w yields a pushforward
measure on G which is called the word measure. An example of an open
question in this area is the following (see [10] and references within):
Conjecture [Amit-Vishne, Shalev]: Two words w1, w2 ∈ Fk are

in the same orbit of the automorphism group of Fk i� the word mea-
sures they induce on any �nite group G are equal.

I am also interested in probability theory and speci�cally random
walks and circle packings - the topics of my masters' thesis (at the
Hebrew University in with Ori Gurel-Gurevich as my advisor). The
motivation for looking at circle packings comes from many di�erent ar-
eas of mathematics, such as complex analysis (see Rodin and Sullivan's
paper [7]), discrete complex analysis and probability theory.
A circle packing is a collection of circles in the plane with disjoint

interiors. The tangency graph of a circle packing is the graph ob-
tained from it by assigning a vertex to each circle and connecting two
vertices by an edge if their respective circles are tangent. The cele-
brated Koebe-Thurston-Andreev Circle Packing Theorem [1, 2] states
that every �nite planar graph is isomorphic to the tangency graph of
some circle packing. Furthermore, if the graph is a triangulation then
the circle packing representing it is unique up to Möbius transforma-
tions and re�ections across lines in the plane. A concise background
on the probabilistic and combinatorial properties of circle packings can
be found in [3]. Now consider an in�nite planar triangulation G. A
compactness argument shows that, as in the �nite case, G can be circle
packed. However, the question of uniqueness is more complicated. We
de�ne the carrier of an circle packing of an in�nite triangulation to
be the union of all the circles, their interiors and the spaces bounded
between three mutually tangent circles (interspaces). It turns out that
there exists an in�nite planar triangulation that can be circle packed
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in a �rst way such that the carrier is the open unit disc and in a second
way such that the carrier the open unit square, but a Möbius tranfor-
mation cannot map the unit disc to the unit square. In [5, 6], He and
Schramm extended the theory of circle packings to the in�nite case.
They proved the following remarkable theorem, relating circle pack-
ings to the probabilistic property of recurrence: Let G be a one-ended
planar triangulation with bounded degrees. Then exactly one of two
cases applies to G: either it can be circle packed with the entire plane
as carrier and the simple random walk on it is recurrent, or it can be
circle packed with the open unit disc as carrier and the simple random
walk on it is transient.
In [4], Gurel-Gurevich, Nachmias and Souto extended the He-Schramm

theorem to the multiply-ended case, showing that a planar triangula-
tion with bounded degrees can be circle packed with a parabolic carrier
i� the simple random walk on it is recurrent (a domain Ω ⊆ R2 is called
parabolic if for any open set U ⊆ Ω, Brownian motion started at any
point of Ω and killed at ∂Ω hits U almost surely).
My thesis dealt with the extension of the He-Schramm theorem to

the case of planar triangulations of unbounded degree. Generally,
the theorem can fail in such a case: there exists a circle packing of
a (unbounded-degree) transient planar triangulation with the entire
plane as carrier. A possible solution which can make the theorem still
hold is replacing the simple random walk with a weighted one, with
edge weights induced by the geometry of the circle packing. These
weights arise naturally in the context of discrete complex analysis [9],
and were proposed in this context by Dubejko [8]. The weights have
a few nice properties: First, in the bounded-degree case, the weighted
random walk is recurrent i� the simple random walk is recurrent: thus,
one can replace the simple walk with the weighted one in the statement
of the He-Schramm theorem. Second, the sequence of centers of circles
visited in the weighted random walk is a martingale. In my thesis, I
showed that given a circle packing of an in�nite planar triangulation
with a parabolic carrier, the weighted random walk on it is recurrent.
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Unitary representation of totally disconnected locally
compact groups.

The family of locally compact groups is one of the most ubiquitous
and fundamental family of groups in mathematics. Those that acts
on discrete structures, the totally disconnected one, arise in numerous
aspects of combinatorial geometry, number theory and algebra. Their
representation theory has been an active domain of research since the
60's and still contains vast uncharted territories. Just as for �nite
groups the irreducible representations are of particular interest. How-
ever, for locally compact groups, the classical problem of decompo-
sition of a unitary representations into irreducible ones is only well
behaved for the so called `type I groups' (Bernstein and Kirillov used
the term `tame' to qualify type I groups, and `wild' for those which
are not type I). Loosely speaking, type I groups are precisely those
locally compact groups whose unitary representations can be written
as a unique direct integral of irreducible representations, thus reducing
the study of arbitrary unitary representations to considerations about
irreducible unitary representations. Furthermore, the determination of
all irreducible unitary representations up to equivalence is known to
be intractable in general, unless the group is type I. An important re-
sult of Thoma [1] shows that a discrete groups is type I if and only
if it is virtually abelian. For non-discrete groups, prominent examples
of type I groups are provided by reductive algebraic groups over non-
Archimedean �elds [2], adelic reductive groups, semisimple connected
Lie groups and nilpotent connected Lie groups. By contrast, very little
is known about the unitary representations of non-linear non-discrete
simple locally compact groups. Most known results so far concern auto-
morphism groups of trees and groups satisfying the Tits independence
property. An intriguing problem asking us to prove surprising parallels
between reductive algebraic groups and closed subgroups of the auto-
morphism group Aut(T ) of a semi regular tree is posed by the type I
conjecture originally due to Nebbia [3]. It states as follows :

Conjecture. Let T be a locally �nite tree and assume that G ≤
Aut(T ) is a closed subgroup acting transitively on the boundary ∂T .
Then G is a type I group.

In a recent paper [4], Cyril Houdayer and Sven Raum proved that
the hypothesis of transitivity on the boundary is certainly needed. To
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be more precise, they proved the following :
Theorem Let T be a locally �nite tree and G ≤ Aut(T ) be a closed
non-amenable subgroup acting minimally on T . If G does not act lo-
cally 2-transitively, then G is a not a type I group.

When it comes to my work, I am currently attacking the type I
conjecture from a di�erent approach by showing that various families of
automorphism groups of trees which acts transitively on the boundary
are indeed Type I. One of the main results I obtained is the following :

Theorem Let T be a (d0, d1)-semiregular tree with d0, d1 ≥ 6 and let
G be a closed subgroup of Aut(T ) acting minimally on T and whose
local action at every point contains the alternating group. Then G is
type I.

In particular, due to considerations that I will not explain here, this
proves the type I conjecture on trees for substantially certain (d0, d1)-
semiregular trees with d0, d1 ≥ 6.
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AUTOMORPHISMS OF CUBICAL GROUPS

A cubical group is a group admitting a geometric action on a �nite-
dimensional CAT(0) cube complex. The most well-known example is
a right-angled Artin group which admits a �nite presentation whose
relations are all commuting generators. On the other hand, a surface
group is also cubical because every surface can be square-tiled.
The mapping class group of a surface is the group generated by Dehn

twists, which is a �nite-index subgroup of the outer automorphism
group by Dehn�Nielsen�Baer Theorem. Similarly, we can also consider
the group generated by transvections and partial conjugations that is
a �nite-index subgroup of the outer automorphism group of a right-
angled Artin group.
This project focuses on the common point among outer automor-

phism groups of cubical groups. At this point, the author would like
to know how many right-angled Artin subgroups are contained in the
outer automorphism group of a cubical group. See the author's work
[2]. On the other hand, the author is interested in the question on what
condition Mostow rigidity holds for these groups.
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Nielsen equivalence in Coxeter groups

The study of Nielsen equivalence has a long history in both combi-
natorial and geometric group theory. It is in some sense the natural
algebraic notion of equivalence on the generating sets of a �nitely gen-
erated group. Given generating sets X and Y of a group G we get
canonical surjections ρX : F(X)→ G and ρY : F(Y )→ G from the free
groups onX and Y to G. If there is an isomorphism α : F(X)

∼−→ F(Y )
such that ρX = ρY ◦ α then X and Y are Nielsen equivalent.
The geometric approach to studying Nielsen equivalence started with

Stallings' proof of Grushko's Theorem: every generating set of G∗H is
Nielsen equivalent to one of the form X ∪Y where X ⊂ G and Y ⊂ H.
More generally Stallings' theory of folds became the blueprint for study-
ing Nielsen equivalence in small-cancellation groups [2], surface groups
[3], and orientable 2-orbifold groups [1] (although combinatorial tech-
niques have also been widely applied to these groups, see for example
[5] and [6]). There are many natural reasons to study Nielsen equiv-
alence including distinguishing isotopy classes of Heegaard splittings
of Seifert �bred spaces [4], the word and isomorphism problems, and
random elements of �nite groups.
I am interested in understanding Nielsen equivalence for Coxeter

groups: discrete groups generated by re�ections. These possess a very
rich geometric and combinatorial theory which makes studying them a
varied and rewarding pursuit. On top of this, Nielsen equivalence brings
in many other ideas, including cube complexes, Bass-Serre Theory,
cluster algebras, and K-Theory.
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On the geometric and topological properties of a selective of
generalisations of Thompson's groups

My research interests lie in the �eld of geometric group theory and
my primary research objective is to study Thompson's groups and some
of their generalisations from combinatorial and geometric aspects.
Thompson's groups discovered in the 60's have been one of the cen-

tral objects in the geometric groups theory de�ned simply from the
algebraic aspect, and they turned out to have surprisingly rich proper-
ties from other aspects.
So far I have been conducting research on several generalised Thomp-

son's groups, such as the Brown-Thompson's groups, braided Thomp-
son's groups and Brin-Thompson's groups from the geometric perspec-
tive and obtained the subgroup distortion results of the Brown Thomp-
son's group Tn inside T and the linear divergence result of the Brown-
Thompson's groups and braided Thompson's groups.
My current project explores the connection between the Thompson's

groups and the knot theoretic properties via Vaughan Jones construc-
tion.
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Finite covers and rigidity of groups

My research centres around �nite covers of graphs, cube complexes
and related spaces, and applications to rigidity of groups. A good start-
ing point is Leighton's Theorem, which states that if two �nite graphs
have a common universal cover then they have a common �nite cover. I
have generalised this theorem to various �graph-like� spaces, for exam-
ple to simplicial complexes with free fundamental groups (joint work
with Bridson). I would also like to generalise it to special cube com-
plexes, although this seems like a much harder problem. Special cube
complexes were introduced by Haglund and Wise, and understanding
their �nite covers has lead to many advances in group theory and topol-
ogy, such as the resolution of the Virtual Haken Conjecture, so they
are a good candidate for an analogue of Leighton's Theorem.
Finding a common �nite cover of two spaces in particular tells us that

their fundamental groups are abstractly commensurable, so Leighton-
type results can be powerful tools for proving rigidity theorems about
groups. One of the most well studied rigidity properties is the follow-
ing: a group G is quasi-isometrically rigid if every �nitely generated
group quasi-isometric to G is abstractly commensurable to G. Exam-
ples include free groups, abelian groups and surface groups. In joint
work with Woodhouse, I proved that a graph of groups with free vertex
groups and in�nite cyclic edge groups has quasi-isometrically rigid fun-
damental group provided that the edge maps are given by su�ciently
long, random words in the vertex groups. My current research aims to
prove similar results for other vertex groups.
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Word Measures on Wreath Products

The work "Word Measures on Wreath Products" is a generalization
of results from [HanPud21] about word measures on the symmetric
group Sn, to the wreath products Gn = G o Sn where G is any �nite
group.
Generally, given a free group F of rank r and a word w ∈ F , one
can take an arbitrary compact group G and consider the natural map
w : Gr → G. By push-forwarding the uniform measure on Gr, we get
the word measure on G, which is determined by the expectations Ew[χ]
of irreducible characters of G.
The goal of this work is to bound Ew[χ] where χ are irreducible char-
acters of the wreath product Gn, when n is large enough. Explicitly,
for every non-power w,

Ew[χ] = O(n−π(w)),

where π(w) is the primitivity rank of w de�ned in [PudPar14].
This get us closer to the conjecture from [HanPud21], that

Ew[χ] = O(χ(1)1−π(w)).

This work uses tools from representation theory of compact groups,
geometric group theory (the structure of some subgroups lattices of
free groups) and combinatorics (partitions, graphs, etc.).
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The growth of solvable groups and dead ends

I am a �rst year PhD student and the main subject of my research
is the growth of groups.
The study of growth of �nitely generated groups is concerned with

how algebraic properties of a group G in�uence its growth function vG,S
with respect to a generating set S. Asymptotic properties of vG,S do
not depend on the choice of S, and in some cases they characterize the
nature of G, as is the case of Gromov's theorem of polynomial growth.
In contrast, analytical properties of vG,S in general do depend on the
choice of S. It is of particular interest the question of whether the
growth series ΓG,S is a rational function. We introduce the (spherical)
growth series :

ΓG,S(z) =
∞∑
n=0

σnz
n,

where σ0 = 1 and σn = vG,S(n) − vG,S(n − 1), n ≥ 1, is the size
of the sphere of radius n of the Cayley graph associated to the pair
(G,S). This power series has a positive radius of convergence and its
analytical and properties give information of the underlying group. For
example if ΓG,S is a rational function, or moreover an algebraic function,
then the underlying group must have either exponential or polynomial
growth, excluding the of G being a group of intermediate growth. The
growth series also provides information about the decidability of the
word problem in G. Namely, if the growth series ΓG,S is a rational
function then the group G must have decidable word problem.
Examples of groups for which rationality of ΓG,S holds independently

of the chosen generating set are hyperbolic groups [5], virtually abelian
groups [1] and the Heisenberg group [4]. Nonetheless, this question
remains a challenge in multiple contexts, and in general the answer
depends on the choice of S: even for nilpotent groups it is possible that
ΓG,S is rational for one choice of S and transcendental for another one,
as has been shown by Stoll [7] for the higher-dimensional Heisenberg
group H5. In this doctoral project we aim to study the case of solvable
groups of exponential growth. Rationality of ΓG,S has been proven
for the solvable Baumslag-Solitar groups BS(1, n), n ≥ 2 [2] , and for
some wreath products, particularly the lamplighter group L2 [6], in
both cases only for standard generating sets.
The question of rationality of ΓG,S for G a solvable group and S an

arbitrary generating set remains a challenge and not much is known,
even for the examples mentioned above. Our objective is to extend
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some methods which work for standard generating sets of BS(1, n) and
L2, and with it understand how the growth series associated to a solv-
able group depends on the choice of S.
Another topic that interests us is dead ends on groups. We say that

an element g ∈ G is a dead end with respect to S if for any s ∈ S∪S−1

we have ‖gs‖G,S ≤ ‖g‖G,S. The idea behind dead end elements is that
geodesic rays connecting the identity to g cannot be extended beyond
g. Similarly, we say that an element g ∈ G is a dead-end of depth
k if k is a maximal integer such that for any 1 ≤ ` ≤ k and any
s1, . . . , s` ∈ S ∪ S−1 we have ‖gs1 · · · s`‖G,S ≤ ‖g‖G,S. This concept
is particularly hard to study since it is not a quasi-isometry invariant,
and it is not even invariant under a change in the chosen generating set.
Some particular results that interest us are the existence of dead ends
of unbounded depth for standard generating sets on the lamplighter
group [3], and the existence of dead ends of unbounded depths for any
generating set of the Heisenberg group [8]. We aim to understand if
this behavior holds for more general nilpotent groups, as well as study
what can be said in the case of solvable groups of exponential growth.
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Actions of Artin groups on non-positively curved spaces

I am a second year PhD student working under the supervision of
Luis Paris and Thomas Haettel. I would like to understand actions
of Artin groups and related groups on non positively curved spaces. I
started by studying group actions on systolic complexes.
A systolic complex is a connected, simply connected and �ag simpli-

cial complex so that any cycle of length less than 6 has a diagonal. A
cycle in a complex is a subcomplex isomorphic to a triangulation of a
1-sphere. In particular, 2-dimensional simplicial complexes are systolic
if and only if they are CAT(0). I wanted to �nd examples of group
presentations for which the �ag complex of the Cayley graph would be
systolic. Garside groups are a natural class of groups to study in that
context. Garside groups were introduced by Dehornoy and Paris as a
generalization of spherical Artin groups. The Garside structure on a
Garside group G induces a presentation 〈S | R〉 where S ∩S−1 = ∅. So
the Cayley graph Γ(G,S) with respect to this presentation is simplicial
and we can consider its �ag complex. I have given a classi�cation of
the Garside groups for which the �ag complex of Γ(G,S) is systolic [1].
I am also learning about other forms of non-positive curvature. I am

currently focusing on understanding CAT(0) spaces and in particular
known constructions for Artin groups and Coxeter groups. I am also
very much looking forward to Damian Osajda's course on Helly graphs
and groups.
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Homological Dehn functions of groups of type FP2,
commensurability of spherical Artin groups and divergence

of Coxeter groups

My current research focuses around the following three areas of geo-
metric group theory:

(1) Groups of type FP2, their quasi-isometry classes and homological
Dehn functions: In my joint article with R.Kropholler and I. Leary, we
show that there exist uncountably many quasi-isometry (qi) classes of
groups with �niteness condition FP. In a subsequent joint paper with
N.Brady and R.Kropholler we study homological Dehn functions of
groups of type FP2, and show that there exist uncountably many qi
classes of groups of type FP2 with a polynomial homological Dehn
function of arbitrary even degree k ≥ 4. There are few interesting
open question here: Are there uncountably many groups (of type FP or
not) with polynomial homological Dehn function of degree 2? of degree
3? Are there uncountably many homological Dehn functions?

(2) Artin groups of spherical type: their classi�cation up to com-
mensurability and property R∞. In a recent article, Cumplido and
Paris studied the question of commensurability between Artin groups
of spherical type. Their analysis left six cases undecided, for the fol-
lowing pairs of Artin groups: (F4, D4), (H4, D4), (F4, H4), (E6, D6),
(E7, D7), and (E8, D8). In my recent paper I resolved the �rst two of
these cases: I showed that Artin groups of types F4 and D4 and also
H4 and D4 are not commensurable to each other. The remaining four
cases are still open and it is a thrilling and challenging task to �gure
them out. Also, in a paper with M.Calvez we establish property R∞
for those spherical and a�ne Artin groups (and their pure subgroups),
which can be embedded in a suitable mapping class group as subgroups
of �nite index. For most other classes of Artin groups, the question if
they have property R∞ is open.

(3) Divergence in arbitrary Coxeter groups. In a joint project with
P.Dani, Y.Naqvi and A.Thomas we study a combinatorial invariant
(a generalization of Levcovitz' hypergraph index for RACGs) which,
as we believe, captures the order of divergence in the Cayley graphs of
arbitrary Coxeter groups. We proved the upper bound for the order
of polynomial divergence in terms of this invariant and are working on
establishing the lower bound.
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Highly transitive groups

For some years, I'm interested in highly transitive countable groups,
i.e. groups admitting an embedding in Sym(N) with dense image.
A recent contribution I made to the subject is a theorem (joint with

P. Fima, F. Le Maître and S. Moon) showing that many groups acting
on trees are highly transitive [1].
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Connections between diagram groups and groups of
increasing homeomorphisms

I am interested in Group Theory, Graph Theory, and Topology, with
my main interest lying at the intersection of these �elds. My current
work on groups of homeomorphisms of the real line relates the theory
of Guba and Sapir's Diagram Groups [3] to the theory around the
subgroup structure of Thompson's group F [1,2].
More speci�cally, I have identi�ed a class of diagram groups in cor-

respondence with a certain class of groups of increasing homeomor-
phisms (including some groups considered in [1]) such that correspond-
ing groups are isomorphic, and I am currently exploiting this connec-
tion to investigate these groups further: for example, to �nd presenta-
tions for them.
Previously, I have also worked on questions in an intersection of

Graph Theory and Enumerative Combinatorics, such as investigating
the frequency with which Dénes permutations appear as orderings of
the edges of a given tree and related questions.
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Groups acting on (very) low dimensional spaces

I am interested in group actions on very low dimensional spaces, such
as the Cantor set (dimension 0), trees, and the line (dimension 1).
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In�nite Type Surfaces

I am a third-year PhD student. Currently, I am interested in under-
standing mapping class groups of in�nite type surfaces via action on a
space of marked hyperbolic structures.
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The Airplane Rearrangement Group

In my recent dissertation, supervised by F. Matucci and inspired by
the works [1] and [2] by J. Belk and B. Forrest about the rearrangement
group of the Basilica Julia set and rearrangements of limit spaces, I
studied the group TA of rearrangements of the Airplane limit space,
which is homeomorphic to a fractal known as the Airplane Julia set.
TA belongs to a class of groups, called rearrangement groups, that

generalize Thompson's groups F and T . These two famous groups are
de�ned as certain groups of orientation-preserving homeomorphisms of
[0, 1] and S1, respectively, but they have as many equivalent de�nitions
as there are topics in which they appear. More about Thompson's
groups can be read in [3].
I proved that TA is generated by natural copies of both Thompson's

groups F and T , hence TA is �nitely generated, and I showed that it
includes an unexpected natural copy of TB, the rearrangement group
of the Basilica limit space, homeomorphic to a fractal known as the
Basilica Julia set.
Then I focused my attention on the commutator subgroup of TA. In

particular, I proved the following results:
• TA = [TA, TA] o 〈ε〉, where 〈ε〉 is an in�nite cyclic group.
• The commutator subgroup [TA, TA] is simple.
• The commutator subgroup [TA, TA] is �nitely generated.

I also studied a speci�c subgroup of the commutator subgroup of TA,
proving that it is in�nitely generated and investigating its transitive
properties.
We now have many examples of rearrangement groups whose com-

mutator subgroup is simple: TA and TB share this property, along with
the trio of Thompson's groups. It might then be possible to generalize
this result to an entire class of rearrangement groups.
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Groups acting on rooted trees

Groups acting on rooted trees, such as the so-called branch groups,
have drawn much attention in recent years, due to many such groups
possessing exotic algebraic properties. A famous example of such a
group is the Grigorchuk group, which was the �rst example of a �nitely
generated group of intermediate word growth, and the �rst example of
a �nitely generated amenable but not elementary amenable group. My
research involves studying generalisations of Grigorchuk-type groups,
and I am particularly interested in the maximal subgroup structure of
these groups.
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C̃2-buildings admitting panel-regular lattices

In April 2021, I started my PhD project under supervision of Stefan
Witzel. We investigate a class of Euclidean Buildings admitting a lat-
tice, which is roughly speaking a pair consisting of a certain contractible
simplicial complex and a group that acts properly and co-compactly
on it. By construction, these buildings are identical locally but the
global structure can di�er slightly. Currently, we try to understand
this di�erence.
To be precise, the buildings are of type C̃2 and the lattices act reg-
ularly on two types of panels (respectively one type of panel). They
were introduced, besides a class of Ã2-buildings, by Essert in [1]. The
latter class has been studied by Witzel [2], who could determine sev-
eral properties of the buildings, such as their automorphisms groups
and isomorphism class, from purely combinatorial data. We aim for a
similar understanding of the C̃2-buildings.
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Density of random subsets and applications to group theory

The density model of random group presentations, in which we �x
the set of generators and take a set of relators randomly with density,
is introduced by Misha Gromov in [1]. We give here a probabilistic
framework for the study of random subsets with density.

3. Densable sequences of random subsets

A random subset A of a �nite set E is a P(E)-valued random vari-
able, where P(E) is the set of subsets of E. Its law is determined by
instances Pr(A = a) through all a ∈ P(E) (or a ⊂ E). We say that A
is permutation invariant if its law is invariant under permutations of
E. That is to say, for any permutation σ of E and any subset a of E,
the probabilities Pr(A = a) and Pr(A = σ(a)) are equal.
Consider a sequence of �nite sets E = (E`)`∈N with |E`| → ∞. Let

(Q`) be a sequence of probability events. We say that Q` is asymp-
totically almost surely (a.a.s.) satis�ed if Pr(Q`) → 1. Note that the
intersection of several a.a.s. satis�ed events is still a.a.s. satis�ed. In
addition, if Q` is a.a.s. satis�ed and "R` under the condition Q`" is
a.a.s. satis�ed, then R` is a.a.s. satis�ed.
A sequence of random subsets A = (A`) of E = (E`) is densable with

density d if the sequence of real valued random variable log|E`|(|A`|)
converges in probability (or in distribution) to the constant d. We
denote

densA = d.

By de�nition, densA = d if and only if

∀ε > 0 a.a.s. |E`|d−ε ≤ |A`| ≤ |E`|d+ε.

For example, if A` is uniform on the subsets of E` of cardinality
b|E`|dc (the uniform model), then it is densable and permutation in-
variant. Another natural model is the Bernoulli model in the following
proposition.

Proposition ([3] Proposition 1.12). If A` is a Bernoulli sampling of
E` with probability p = |E`|d−1, then A = (A`) is a densable sequence
of permutation invariant random subsets with density d.

Proof. Let σ be a permutation of E` and let a ⊂ E`. Note that |σ(a)| =
|a|. By de�nition,

Pr(A` = a) = p|a|(1− p)|E`|−|a| = Pr(A` = σ(a)).
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So A` is permutation invariant.
Note that E(|A`|) = |E`|p = |E`|d and Var(|A`|) = |E`|d(1 − p) ≤
|E`|d. By Chebyshev's inequality

Pr

(
||A`| − E(|A`|)| >

1

2
E(|A`|)

)
≤ 4Var(|A`|)

E(|A`|2)
≤ 4|E`|d

|E`|2d
→ 0,

so a.a.s. 1
2
E(|A`|) ≤ |A`| ≤ 3

2
E(|A`|), which implies

∀ε > 0 a.a.s. |E`|d−ε ≤ |A`| ≤ |E`|d+ε.

�

4. The intersection formula

Now we state the intersection formula for random subsets. See [1]
for the original version by M. Gromov, and [3] for a detailed proof.

Theorem (The intersection formula). Let A = (A`), B = (B`)
be independent densable sequences of permutation invariant random
subsets.

(1) If densA + densB < 1, then a.a.s. A` ∩B` is empty.
(2) If densA + densB > 1, then A ∩B := (A` ∩ B`) is a densable

sequence of permutation invariant random subset and

dens(A ∩B) = densA + densB − 1.

In particular, a.a.s. A` ∩B` is not empty

Proof for the Bernoulli density model. Let α, β ∈]0, 1]. Suppose that
A` and B` are Bernoulli samplings of E` with parameters |E`|α−1 and
|E`|β−1. By independence, for any element e ∈ E`,

Pr(e ∈ A` ∩B`) = Pr(e ∈ A`) Pr(e ∈ B`) = |E`|(α+β−1)−1.

So A` ∩B` is a Bernoulli sampling of E` with parameter |E`|(α+β−1)−1.
Hence, the second assertion holds if α + β − 1 > 0.
If α + β − 1 < 0, by Markov's inequality

Pr(|A` ∩B`| ≥ 1) ≤ E(|A` ∩B`|) = |E`|α+β−1 → 0.

�

5. The density model of random groups

Fix an alphabet X = {x1, . . . , xm} as generators of group presenta-
tions. Let B` be the set of cyclically reduced words on {x±1 , . . . , x±m} of
lengths at most `. Note that

|B`| = (2m− 1)`+o(`).

We consider a sequence of random groups G(m, d) = (G`(m, d))
de�ned by random presentations G`(m, d) := 〈X|R`〉 where R = (R`)
is a densable sequence of permutation invariant random subsets ofB =
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(B`) with density d. Such a sequence is called a sequence of random
groups at density d.
The number of relaters |R`| is very probably close to (2m − 1)d` by

de�nition. More precisely, for any ε > 0 a.a.s.

(2m− 1)d`−ε` ≤ |R`| ≤ (2m− 1)d`+ε`.

We are interested in asymptotic behaviors of sequences of random
groups at di�erent densities. In his book [1], Gromov observed that
there is a phase transition at density 1/2.

Theorem (Phase transition at density 1/2) LetG(m, d) = (G`(m, d))
be a sequence of random groups at density d.

(1) If d > 1/2, then a.a.s. G`(m, d) is a trivial group.
(2) If d < 1/2, then a.a.s. G`(m, d) is a δ-hyperbolic group with

δ = 4`
1−2d

.

Proof of (1). Denote S` the set of cyclically reduced words of length ex-
actly `. The sequence (S`−1) is a �xed sequence of subsets of B = (B`)
of density 1. Let x ∈ X. By the intersection formula, the two sequences
(x(R`∩S`−1)) and (R`∩xS`−1) are both sequences of Bernoulli random
subsets of (xS`−1) of density d.
By the intersection formula, their intersection is a sequence of Bernoulli

random subsets of density (2d−1) > 0, which is a.a.s. not empty. Thus
a.a.s. there exists a word w ∈ S`−1 such that w ∈ R` and xw ∈ R`, so
a.a.s. x = 1 in G` by canceling w.
The argument above works for all generators x ∈ X. The intersection

of a �nite number of a.a.s. satis�ed events is still a.a.s. satis�ed. Hence
a.a.s. all generators x ∈ X are trivial in G`, so a.a.s. G` is isomorphic
to the trivial group. �

The proof of (2) needs van Kampen diagrams. See [1] for the original
idea by Gromov and [2] for a detailed proof by Y. Ollivier.
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Virtual and residual properties of groups

I am interested in criteria and invariants relating to virtual and resid-
ual properties of �nitely generated groups [1]. The main properties of
interest to me are residual �niteness and a group being virtually torsion-
free. I seek to not only establish such properties for wide classes of
groups, but also enjoy coming up with exotic groups breaking these
properties in various combinations [2].

Finiteness properties of groups, both classical and homological, are
a great way to understand the universe of groups. Bestvina-Brady
groups give rich examples of �niteness properties, and much of my
research has focussed on generalised Bestvina-Brady groups [3]. I would
like to generalise the cube-complex linear Morse theory used to build
such groups to wider contexts, such as in branching of special cube
complexes in other settings.
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Olga Varghese
OvGU Magdeburg

Graph products and their automorphism groups

In my research I focus on groups which are built from groups which
are 'nice': graph products of (�nite, cyclic, Gromov-hyperbolic, CAT(0))
groups and their automorphism groups. Given a �nite simplicial graph
Γ and a collection of groups G = {Gu | u ∈ V (Γ)} indexed by the
vertex-set V (Γ) of Γ, the graph product GΓ is de�ned as the quotient

(∗u∈VGu)/〈〈[Gv, Gw] for {v, w} ∈ E(Γ)〉〉,
where E(Γ) denotes the edge-set of Γ. Let P be a property which is
satis�ed by every vertex group (puzzle piece of GΓ). I am interested
in understanding under which combinatorial conditions on the graph Γ
the hole puzzle, the group GΓ, and their automorphism group Aut(GΓ)
have the same property P .
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Enric Ventura
Universitat Politècnica de Catalunya

My research area in mathematics is combinatorial, geometric, algo-
rithmic, and asymptotic group theory. Within this area, I am mainly
(but not only) interested in the following research topics: (1) free
groups, the lattice of subgroups of a free group via graphs and au-
tomata, automorphisms and endomorphisms of free groups and their
�xed points, variations of these topics in groups somehow related to
free groups (like free-by-cyclic, free-by-free, surface groups, hyperbolic
groups, etc); (2) algorithmic problems about groups, with the study of
their complexity, for example, solvability and unsolvability of the word,
conjugacy, twisted conjugacy, and related problems in �nitely presented
groups, computational complexity of algorithms: worst case, average
case and generic case complexities, generic and asymptotic properties of
groups, etc; (3) study of the degree of satisfybility of certain equations
on �nitely generated groups, and its relation with the algebraic struc-
ture of the group, with particular interest in commuting, nilpotence,
power equations, etc.
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Torsion Subgroups of Groups with Quadratic Dehn Function

Let G be a group with �nite presentation P = 〈S | R〉. Then, a
word w in the letters S ∪ S−1 is equal to 1 in G i� there exist k ∈ N,
r1, . . . rk ∈ R, and f1, . . . , fk ∈ F (S) such that w ≡

∏k
i=1 f

−1
i rifi

(where ≡ is letter-for-letter equality).
For such w, the minimal possible k such that a representation as

above is possible is called the area of w and denoted AreaP(w). The
Dehn function of P is then the function δP : N→ N de�ned by

δP(n) = min{AreaP(w) : |w|S ≤ n}
Up to an equivalence relation on functions N→ N, the Dehn function
is independent of �nite presentation, so that one can discuss the Dehn
function δG of a �nitely presented group G. The Dehn function has
many applications to the understanding of a �nitely presented group,
e.g to the solvability of the word and conjugacy problems.
It is known ([1], [2], [4]) that a group is hyperbolic if and only if it

has subquadratic, and so linear, Dehn function. This implies that there
exists an `isoperimetric gap' between groups with linear and groups
with quadratic Dehn function (indeed, this is the only such gap in the
spectrum of Dehn functions). Further, it is proved in [2] that hyperbolic
groups cannot contain (�nitely generated) in�nite torsion subgroups.
I proved in [5] that no extension of the Ghys-de la Harpe theorem is

possible, producing the �rst examples of �nitely presented groups with
quadratic Dehn function that contain �nitely generated in�nite torsion
subgroups. In particular, for any m > 1 and n su�ciently large (and
either odd or divisible by 29), I produce a quasi-isometric embedding of
the in�nite free Burnside group B(m,n) into a quadratic Dehn function
group.
I am currently using the techniques of [5] to produce a re�nement of

the Higman embedding and Boone-Higman theorems.
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Wenhao Wang
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Dehn Functions of Metabelian Groups

The word problem is one of the most fundamental algorithmic prob-
lem one can ask for a group. It asks whether there exists an algorithm
to check a given word (with respect to a certain generating set) is iden-
tity or not. The study of the Dehn function rises naturally from the
study of the word problem for �nitely presented groups. Given a �nitely
presented group G = 〈X | R〉, words that represents the identity in G
is same as (setwise) the normal closure of R in F (X), the free group
freely generated by X. Thus one can write a word w that represents
identity in products of conjugates of relators, that the word length of w
in generating set {rf | r ∈ R, f ∈ G} is called the area of w. The Dehn
function δ(n) is the maximal area among words in the normal closure
of R of length 6 n (in generating set X). One well-known result states
that the word problem of �nitely presented group is decidable if and
only if its Dehn function is bounded above by a recursive function [1].
I currently work on the Dehn function of �nitely presented metabelian

groups and I have obtained some results on this topic. In [2], I have
shown that Dehn functions of �nitely presented metabelian groups have
a uniform upper bound. I also showed that the same upper bound
works for the relative Dehn function of �nitely generated metabelian
groups and revealed the relationship between the relative Dehn func-
tion and the Dehn function. In addition, I proved that every wreath
product of a free abelian of �nite rank with a �nitely generated abelian
group can be embedded into a metabelian group with exponential Dehn
function. In [3], I improved the upper bound obtained in [2] for the
case of abelian-by-Z groups and computed relative Dehn functions for
various groups.
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Daxun Wang
University at Bu�alo, SUNY
PhD advisor: Johanna Mangahas

RESEARCH STATEMENT

My research interest lies in geometric group theory, particularly
in problems with generalized Baumslag-Solitar groups. A generalized
Baumslag-Solitar group is a group that acts on a tree with in�nite cyclic
edge and vertex stabilizers. These groups have been studied in relation
with splitting of groups, both in the work of Kropholler [1], Forester
[4] and as examples of JSJ decompositions [3]. Basic examples are pro-
vided by the Baumslag-Solitar group BS(m,n) = 〈x, t|txmt−1 = xn〉.
Overview: I am working on the isomorphism problem of the GBS

groups. The isomorphism problem for GBS groups is the problem of de-
termining whether two given GBS groups de�ne isomorphic groups. A
GBS group can be represented by a labeled graph, which is a connected
graph whose oriented edges are each labeled by a non-zero integer. This
description turns the isomorphism problem of the GBS groups into the
isomorphism problem of the labeled graphs. This problem has only
been shown to be solvable in limited special cases.
Levitt showed that the isomorphism problem is solvable for GBS

groups G such that Out(G) does not contain a non-abelian free group
[2]. Forester solved the isomorphism problem for GBS groups with
no nontrivial integral moduli [4]. Clay and Forester showed that the
isomorphism problem is solvable for GBS groups whose labeled graphs
have �rst Betti number at most one [5]. Dudkin solved the isomorphism
problem for GBS groups with one mobile edge [6].
Present: My current plan is to work on the general isomorphism

problem. There are two cases to consider: the ascending case and the
non-ascending case. First, I am trying to �nd an algorithm to deter-
mine whether a given labeled graph Γ is ascending or non-ascending.
Second, in each case, I am trying to de�ne the normal forms of Γ,
which is a �nite set of reduced labeled graphs, and can be enumer-
ated e�ectively. Thus, the isomorphim problem of any labeled graphs
would turn into the isomorphism problem of their normal forms. This
is computable by the �niteness of the normal form.
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RESEARCH STATEMENT

I am a �fth year PhD student at Texas A&M University, working in
noncommutative geometry, with interests in geometric group theory.
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Quasi-isometric rigidity of certain RACGs

I am a third year PhD student working on problems in quasi-isometric
(QI) rigidity. An early development in this area was a combination of
work by Tukia, Gabai, Casson, and Jungeis, who showed the class of
surface groups is QI rigid. More recent work deals with surface group
amalgams, which have close connections to RACGs. By exploring sur-
face amalgams, Dani, Stark, and Thomas show in [1] that a subclass
of certain hyperbolic, one-ended RACGs that split over 2-ended sub-
groups is not QI rigid. On the other hand, Taam and Touikan show in
[2] the class of fundamental groups of surface amalgams composed of
surfaces glued along �lling curves is QI rigid. A key di�erence between
the two classes of groups explored is the presence of quadratically-
hanging (QH) or rigid vertices in the JSJ tree. My goal is to determine
QI rigidity of the middle case- surface group amalgams and RACGs
with both QH and rigid vertices in their JSJ trees.

Tangentially, I am currently also exploring stable commutator length
(scl). In particular, I am interested in the realizability of a given real
number as the scl of a �nitely presented group. A motivation for this
question is a recent paper by Avery and Chen [3], who introduce a
new notion of stable torsion length (stl). It is known that for g ∈
Gtor ∩ [G,G], 2scl(g) ≤ stl(g). We want to know if the inequality is
necessary. One possible class of groups to consider is one mentioned
above- RACGs.
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Chenxi Wu
University of Wisconsin at Madison

Outer space and handlebody groups

My current research is mostly on train track representations of ele-
ments of Out(Fn) and their relationship with the handlebody groups.
In particular I am focusing on the following three questions:

• With Harry Baik and Sebastian Hensel, I am working on study-
ing the handlebody group element with minimal entropy or min-
imal complexity (measured by, e.g., curve complex translation
length) of an irreducible train-track map.
• With Giulio Tiozzo and Kathryn Lindsey, I am working on
generalizing the Milnor-Thurston kneading theory to trees and
graphs, and I am hoping to use this to �nd criteria of traintrack
maps that can be optimally lifted to handlebody group with the
exact same entropy.
• With Farbod Shokrieh, I am working on understanding the gap
between stretch factor of train track map and the spectral radius
on homology using L2 techniques.
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Zhiqiang Xiao
Taizhou University

Gaps in the lattices of topological group topologies

Let G be an abstract group and (G(G),∧,∨) be the lattice of all
topological group topologies on a group G, where the binary operations
∨ and ∧ are called the join and meet, respectively. The join τ ∨ σ of
topologies τ, σ ∈ G(G) is the coarsest topological group topology λ on
G satisfying τ ⊂ λ and σ ⊂ λ. Similarly, τ ∧ σ is the �nest topological
group topology λ∗ on G satisfying λ∗ ⊂ τ and λ∗ ⊂ σ. It is known
and easy to verify that the lattice (G(G),∧,∨) is complete, i.e. every
non-empty set S ⊂ G(G) has the lowest upper bound called supremum
of S, and the greatest lower bound called in�mum of S. In the sequel
we abbreviate (G(G),∨,∧) to G(G).
Let L be a subfamily of G(G). A pair of elements τ, σ ∈ L with σ ( τ

is a gap in L if no element λ ∈ L satis�es σ ( λ ( τ , then σ is called a
predecessor of τ in L and τ is a successor of σ in L. Our main interest
is to discuss about the predecessors and successors of locally compact
group (G, τ) in G(G). We give complete descriptions of predecessors of
locally compact groups and discuss about the existence of successors
of some locally compact abelian groups (see [1]-[3]). We also discuss
about predecessors and successors of some special nonabelian locally
compact group.
I am also very interested in geometric group theory, especially on

the quasi-isometric classi�cation of locally compact groups. Now I try
to make use of geometric tools and methods to study groups. I hope
we can build more connections between topological group theory and
geometric group theory.
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Subgroups of Baumslag-Solitar groups, RAAGs and
virtually free groups

I am interested in studying the subgroup structure of various groups
that are important in geometric group theory, both from algebraic and
algorithmic points of view. I have been working on commensurabil-
ity classi�cation of right-angled Artin groups and of Baumslag-Solitar
groups, Hanna Neumann type bounds for the intersection of subgroups
in groups acting on trees (including virtually free groups), computing
intersection of subgroups in some right-angled Artin groups, and the
isomorphism problem for submonoids of virtually free groups, among
other things.
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RESEARCH STATEMENT

I like to think about generalizations of hyperbolicity, boundaries of
groups and CAT(0) cube complexes. I recently became interested in
hierarchically hyperbolic groups.
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Volume Entropy

There is an explicit formula for computing the volume entropy of
certain �nite graphs. I am trying to generalize this result to spaces such
as wedge sums of graphs. Other topics of interest include boundaries
of hyperbolic groups, CAT(κ) spaces, and dynamical systems.


