UKES | Newcastle

Sep 3rd – 5th 2019

Real time detection of electrode side reactions by on-line flow cell ICP-OES

One step closer to realising next generation batteries

Shahin Nikman, Beatrice Wolff, Harry Hoster

Zinc-Air Electrochemistry

Voltage windows and parasitic side reactions Lancaster University

Results I – C.C. dissolution

11/09/2019

Results I – Current Collectors Dissolution

Lancaster Star University

Energy Lancaster

Results I – Current Collectors Dissolution

Lancaster Saluriversity

Energy Lancaster

Results I – Current Collectors Dissolution

Results II - Stability of Ni_xCo_{3-x}O₄

E (V vs RHE)

11/09/2019

x in Ni _x Co _{3-x} O ₄	μg cm ⁻²
0	0.049
0.4	0.48
0.5	0.53
0.8	0.80
1.0	0.42

Conclusion

- Nickel most stable positive current collector for alkaline zinc-air cells
- Nickel cobalt oxides unstable under high discharge conditions
- Instability of nickel cobalt oxide increase with Ni substitution
- Stability window must be considered for all materials

AMAZONAS HAS DECLARED EMERGENCY STATE

Thank you for your attention

References:

[1] D. Pletcher et al, *Electrochim. Acta*, 2016, **188**, 286–293.
[2] Z. Ma et al, J. Power Sources. 274 (2015) 56–64. doi:10.1016/j.jpowsour.2014.10.030.3
[3] M. Xu, et al, J. Power Sources. 283 (2015) 358–371. doi:10.1016/j.jpowsour.2015.02.114.
[4] D. Wittmaier et al, Adv. Energy Mater. 5 (2015) 1–8. doi:10.1002/aenm.201500763.