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Topological Rigidity

X, a class of topological spaces, is topologically rigid if for all X,
X ey, 'IT1(X) E1T1(X’) implies X and X" are homeomorphic.
Examples:

- Thick, hyperbolic 2-dimensional P-manifolds (Lafont)
- Certain quotients of Fuchsian buildings (Xie)
- Simply-connected, closed 3-manifolds (Perelman)



Right-Angled Coxeter Groups

Let I be a finite simplicial graph. The right-angled Coxeter
group (RACG) with defining graph I is:

W) =(v € V([N :v?=1, [v, w] =1 for {v, w} € E(I"))



Davis Orbicomplex of W(I')
ol = (PresentatLon complex of W(I')) / W(I")

1\ o«

DN e —— -
N ’

. . _ Hyperbolic metric
Piecewise flat metric



Cycles of Generalized © Graphs

Generalized © graph

Source: Pallavi Dani

Cycle of generalized © graphs



Past Work

Theorem (Stark 2017): Let [ = cycle of generalized O
graphs. Then X is not topologically rigid.




W = any set of RACGs
X = 0O(I') and their finite-sheeted covers

Open question: Is X topologically rigid?

More specific question: What conditions on the Euler
characteristic vectors are obstructions to topological rigidity?



Commensurability of Euler Characteristic vectors

222272%2272%%




There are a lot of possible covers...
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Graphs (covers of singular subsets) may be nonplanar
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