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@ What are limit groups - some history and examples

@ Limit groups are limits of free groups (and some logic)
© Hierarchies

@ Properties of limit groups

© Generalizations
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Residual properties

Limit groups have been studied since the 1960's (Baumslag,
Lyndon and others) under the name finitely generated fully
residually free groups.
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Residual properties

Limit groups have been studied since the 1960's (Baumslag,
Lyndon and others) under the name finitely generated fully
residually free groups.

Recall that a group G is residually free if for every 1 # g € G there
is a homomorphism f : G — F such that f(g) # 1.
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Residual properties

Limit groups have been studied since the 1960's (Baumslag,
Lyndon and others) under the name finitely generated fully
residually free groups.

Recall that a group G is residually free if for every 1 # g € G there
is a homomorphism f : G — F such that f(g) # 1.

Definition

A group G is called fully residually free (or w-residually free) if for
every finite subset A C G there is a homomorphism f : G — F
that is injective on A.

Jonathan Fruchter yGGTX Parallel Sessions - Limit groups



Residual properties

Limit groups have been studied since the 1960's (Baumslag,
Lyndon and others) under the name finitely generated fully
residually free groups.

Recall that a group G is residually free if for every 1 # g € G there
is a homomorphism f : G — F such that f(g) # 1.

Definition

A group G is called fully residually free (or w-residually free) if for
every finite subset A C G there is a homomorphism f : G — F
that is injective on A.

A finitely generated subgroup of a limit group is also a limit group.
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© Finitely generated free groups
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© Finitely generated free groups
@ Finitely generated abelian groups - Z" is fully residually Z
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© Finitely generated free groups
@ Finitely generated abelian groups - Z" is fully residually Z
© Surface groups (the “classical example” of a limit group):

-0 T
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© Finitely generated free groups
@ Finitely generated abelian groups - Z" is fully residually Z
© Surface groups (the “classical example” of a limit group):

-0 T

Let r : m¥ — F; be the retraction which maps the right half

surface to the left one.
Let 7, : m X — mX be the automorphism of 713 which restricts

to the identity on the left half surface, and to conjugation by the
loop v on the right half surface:

CLo— &

Jonathan Fruchter yGGTX Parallel Sessions - Limit groups



Examples - continued

« « in left half surface

vyay™!  « in right half surface
and for ajb; - - - apb, € m1(X) where a; and b; lie in m1(left) and
m1(right) respectively,

More formally, 7, (a) =

Ty(a1by - - - anbn) = a1 v b vy reia,y byl
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Examples - continued

« o in left half surface

More formally, 7, () =
. 7 () vyay™!  « in right half surface

and for ajb; - - - apb, € m1(X) where a; and b; lie in m1(left) and
m1(right) respectively,

Ty(a1by - - - anbn) = a1 v b vy reia,y byl
The map ro (7,)% : mZ — F> sends a1 by - - - apb, € m1(X) to
k —k K —k
r(ar) [x, y]% r(b1) [x,y]7" - r(an) [x, ¥]* r(bn) [x, ]

which is nontrivial for large enough k (“boundary games”).
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Examples - continued

« « in left half surface

vyay™!  « in right half surface
and for ajb; - - - apb, € m1(X) where a; and b; lie in m1(left) and
m1(right) respectively,

More formally, 7, (a) =

Ty(a1by - - - anbn) = a1 v b vy reia,y byl

The map ro (7,)% : mZ — F> sends a1 by - - - apb, € m1(X) to
K —k K —k
r(ar) [x, y]% r(b1) [x,y]7" - r(an) [x, ¥]* r(bn) [x, ]

which is nontrivial for large enough k (“boundary games”).

Recommendation

Dense embeddings of surface groups (Emmanuel Breuillard,
Tsachik Gelander, Juan Souto, Peter Storm, '06).
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Examples - continued

4. Extensions of centralizers:

Let G be a limit group and let g € G. The extension of the
centralizer C(g) by a free abelian group A is the group

G*C(g) (C(g) X A)
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Examples - continued

4. Extensions of centralizers:

Definition

Let G be a limit group and let g € G. The extension of the
centralizer C(g) by a free abelian group A is the group

G*C(g) (C(g) X A)

As before, define a map
f:G *C(g) (C(g) X A) -G

which restricts to the identity on G and which maps A to large

powers of g. This shows that G x¢(4) (C(g) x A) is fully residually
G (hence fully residually free).
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Marked groups

Definition

A marked group is a pair (G, S) such that G is a group and S is a
finite generating set of G. Define G, to be the set of marked
groups (G, S) such that |S| = n.
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Marked groups

Definition

A marked group is a pair (G, S) such that G is a group and S is a
finite generating set of G. Define G, to be the set of marked
groups (G, S) such that |S| = n.

The space G, is a metric space:
d((G,S), (G/7 S/)) =e N

where N is the maximal integer such that radius N balls around 1
in X(G,S) and X(G',S’) are the same.
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Marked groups

Definition

A marked group is a pair (G, S) such that G is a group and S is a
finite generating set of G. Define G, to be the set of marked
groups (G, S) such that |S| = n.

The space G, is a metric space:
d((G,S), (G/7 S/)) =e N

where N is the maximal integer such that radius N balls around 1
in X(G,S) and X(G',S’) are the same.

G is a limit group <= G =limj(G;, S;) in G, and each G; is
a free group.
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Some connections with logic

Recall that the first order theory of a group consists of the
sentences of the form

Vxl,...,x,,XEIyl,...,y,,szl,...,z,,z---\/ /\W,',J'(Xl,X2,...) Z1

which are true in G.
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Some connections with logic

Recall that the first order theory of a group consists of the
sentences of the form

Vxl,...,x,,XEIyl,...,y,,szl,...,z,,z---\/ /\W,',J'(Xl,X2,...) Z1
i=1j=1

which are true in G.

For example,
e if G is nontrivial, the sentence 3g g # 1 is in Th(G)
e if Ais abelian, the sentence VxVy [x,y] = 1 is in Th(A)

o if H is torsion-free, the family of sentences
®,=Vx (x#1— x"#1)is in Th(H)
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The universal theory

A finitely generated group G is a (non-abelian) limit group <=
G has the same universal (only ¥ quantifiers) as a (non-abelian)
free group.
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The universal theory

A finitely generated group G is a (non-abelian) limit group <=
G has the same universal (only ¥ quantifiers) as a (non-abelian)
free group.

sketch-of-Proof.

—> we will show: if ® is a universal sentence, the set

{(G,S)| G = ®} is closed in G,. Equivalently, the set

X ={(G,S)| G =~} is open. For simplicity, assume

—® = 3xg -+ Ixy w(xy,...,x,) =1 and G = —P. So there are
gi,---,8n € Gstw(gy,...,gn) =1 Let R > |w(g1,...,&n)|, so
the ball of radius e " in G, is in X.

<= let R > 0, the ball of radius R in G can be encoded by a
collection ® of equations and inequations. There is a free group F
satisfying dx3 - - - Ax,® which implies that G and F are at least

e R close.
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Structure of limit groups

These connections with logic drove Sela and independently
Kharlampovich-Miyasnikov to study limit groups further, and they

played an important role in their positive answer of the following
question:

Question (Tarski's question)

Do the first order theories of all non-abelian free groups coincide?
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Structure of limit groups

These connections with logic drove Sela and independently
Kharlampovich-Miyasnikov to study limit groups further, and they
played an important role in their positive answer of the following
question:

Question (Tarski's question)

Do the first order theories of all non-abelian free groups coincide?

Actions of limit groups on real trees (a topic for another day) play
a major role in their proofs. Another key ingredient in their proof is
the hierarchical structure of limit groups.
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Iterated doubles

Recall the example of a surface group from earlier:

e
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Iterated doubles

Recall the example of a surface group from earlier:
F. F. z

m L can be obtained by doubling a free group: m% = Fax([y ) F2.
All limit groups can be obtained by iterating a similar construction:
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Iterated doubles

Recall the example of a surface group from earlier:
F. F. z

m L can be obtained by doubling a free group: m% = Fax([y ) F2.
All limit groups can be obtained by iterating a similar construction:
Definition

A generalized double over a limit group G is a group H = Ax¢c B
(or Ax¢) such that:

@ A, B are finitely generated.
@ C is a non-trivial and maximal abelian in both A and B.

© Jepimorphism f : H — G such that f|4 and f|g are injective.
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Iterated doubles

Recall the example of a surface group from earlier:
F. F. z

m L can be obtained by doubling a free group: m% = Fax([y ) F2.
All limit groups can be obtained by iterating a similar construction:
A generalized double over a limit group G is a group H = Ax¢c B
(or Ax¢) such that:

@ A, B are finitely generated.
@ C is a non-trivial and maximal abelian in both A and B.
© Jepimorphism f : H — G such that f|4 and f|g are injective.

G is a limit group <= G can be obtained by repeatedly taking
generalized doubles (and free products), starting with free groups.
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Iterated centralizer extensions

We already mentioned that if G is a limit group, then so is the
centralizer extension G *¢(4) (C(g) x A).
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Iterated centralizer extensions

We already mentioned that if G is a limit group, then so is the
centralizer extension G *¢(4) (C(g) x A).

Definition

A group G is an ZCE-group (iterated extension of centralizers) if it
can be obtained from a free group by a finite sequence of
extensions of centralizers.
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Iterated centralizer extensions

We already mentioned that if G is a limit group, then so is the
centralizer extension G *¢(4) (C(g) x A).

A group G is an ZCE-group (iterated extension of centralizers) if it
can be obtained from a free group by a finite sequence of

extensions of centralizers.

v
Theorem

G is a limit group <= G is a finitely generated subgroup of an
ICE group.
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w—residually free towers

The next characterization of limit groups is slightly more
complicated, but includes a complete classification of all f.g groups
G s.t Th(G) = Th(F).
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w—residually free towers

The next characterization of limit groups is slightly more
complicated, but includes a complete classification of all f.g groups
G s.t Th(G) = Th(F).

Definition
An w—residually free tower is a space X = X,,, constructed floor by
floor:

@ The first floor Xp is a wedge of graphs, (multi-dimensional)
tori, and closed hyperbolic surfaces (x < —1).
@ Xp11 is obtained from X, by attaching a floor of one of the
following kinds:
@ surface: a hyperbolic compact surface ¥ with boundary,
attached to X, by its boundary, such that there is a retraction
r: Xmy1 — X with ri(m1X) non-abelian.
@ torus: a torus Tk attached along one of its coordinates (i.e
{1} x -+ x St x .-+ x {1}), such that the attaching curve
generates a maximal abelian subgroup of X,.

Jonathan Fruchter yGGTX Parallel Sessions - Limit groups



w—residually free towers

(Sela) G is a limit group < it is a finitely generated subgroup
of the fundamental group of an w—residually free tower.
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w—residually free towers

(Sela) G is a limit group < it is a finitely generated subgroup
of the fundamental group of an w—residually free tower.

(Sela) Let G be a f.g group. Th(G) = Th(F) <= G is the
fundamental group of an w—residually free tower whose
construction involves no tori.
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Properties of limit groups

@ Limit groups are torsion-free (Vx (x # 1 — x" # 1)).
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Properties of limit groups

@ Limit groups are torsion-free (Vx (x # 1 — x" # 1)).
@ Limit groups are commutative transitive
(IxVyVz ([ y] =1A[y,zl =1 = [x,z] = 1)).
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Properties of limit groups

@ Limit groups are torsion-free (Vx (x # 1 — x" # 1)).
@ Limit groups are commutative transitive
(VxVyVz ([x,y] =1Aly,z] =1 = [x,2z] = 1)).
© Any two elements of a limit group generate one of the
following groups: {1}, 7,72, F».
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Properties of limit groups

@ Limit groups are torsion-free (Vx (x # 1 — x" # 1)).

@ Limit groups are commutative transitive
(VxVyVz ([x,y] =1Aly,z] =1 = [x,2z] = 1)).

© Any two elements of a limit group generate one of the
following groups: {1}, 7,72, F».

@ Limit groups are hyperbolic relative to free abelian groups
(Dahmani).
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Properties of limit groups

@ Limit groups are torsion-free (Vx (x # 1 — x" # 1)).

@ Limit groups are commutative transitive
(VxVyVz ([x,y] =1Aly,z] =1 = [x,2z] = 1)).

© Any two elements of a limit group generate one of the
following groups: {1}, 7,72, F».

@ Limit groups are hyperbolic relative to free abelian groups
(Dahmani).

@ Limit groups are virtually special (Wise).
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Properties of limit groups

@ Limit groups are torsion-free (Vx (x # 1 — x" # 1)).

@ Limit groups are commutative transitive
(VxVyVz ([x,y] =1Aly,z] =1 = [x,2z] = 1)).

© Any two elements of a limit group generate one of the
following groups: {1}, 7,72, F».

@ Limit groups are hyperbolic relative to free abelian groups
(Dahmani).

@ Limit groups are virtually special (Wise).

O Finitely generated subgroups of limit groups are separable
(closed in the profinite topology). Limit groups also virtually
retract onto their finitely generated subgroups (Wilton).

Recommendation
Google “Marshall Hall's Theorem”!
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Properties of limit groups

@ Limit groups are torsion-free (Vx (x # 1 — x" # 1)).

@ Limit groups are commutative transitive
(VxVyVz ([x,y] =1Aly,z] =1 = [x,2z] = 1)).

© Any two elements of a limit group generate one of the
following groups: {1}, 7,72, F».

@ Limit groups are hyperbolic relative to free abelian groups
(Dahmani).

@ Limit groups are virtually special (Wise).

O Finitely generated subgroups of limit groups are separable
(closed in the profinite topology). Limit groups also virtually
retract onto their finitely generated subgroups (Wilton).

Recommendation
Google “Marshall Hall's Theorem”!

@ Every one-ended limit group contains a surface subgroup
(Wilton).

Jonathan Fruchter yGGTX Parallel Sessions - Limit groups



Generalizations to non-free settings

Another active research topic is limit groups over non-free groups.
Some more (and less) recent work about limit groups over different
classes of groups:

@ Torsion-free hyperbolic (Sela) and hyperbolic (André) groups.

@ Toral relatively hyperbolic groups (Kharlampovich-Miyasnikov,
Groves).

@ Acylindrically hyperbolic groups (Groves-Hull, André-F).
© (Coherent) RAAGs (Casals-Ruiz-Duncan-Kazachkov).
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