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Residual properties

Limit groups have been studied since the 1960’s (Baumslag,
Lyndon and others) under the name finitely generated fully
residually free groups.

Recall that a group G is residually free if for every 1 6= g ∈ G there
is a homomorphism f : G → F such that f (g) 6= 1.

Definition

A group G is called fully residually free (or ω-residually free) if for
every finite subset A ⊂ G there is a homomorphism f : G → F
that is injective on A.

Remark

A finitely generated subgroup of a limit group is also a limit group.
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Examples

1 Finitely generated free groups
2 Finitely generated abelian groups - Zn is fully residually Z
3 Surface groups (the “classical example” of a limit group):

Let r : π1Σ→ F2 be the retraction which maps the right half
surface to the left one.
Let τγ : π1Σ→ π1Σ be the automorphism of π1Σ which restricts
to the identity on the left half surface, and to conjugation by the
loop γ on the right half surface:
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Examples - continued

More formally, τγ(α) =

{
α α in left half surface

γαγ−1 α in right half surface

and for a1b1 · · · anbn ∈ π1(Σ) where ai and bi lie in π1(left) and
π1(right) respectively,

τγ(a1b1 · · · anbn) = a1 γ b1 γ
−1 · · · an γ bn γ

−1.

The map r ◦ (τγ)k : π1Σ→ F2 sends a1b1 · · · anbn ∈ π1(Σ) to

r(a1) [x , y ]k r(b1) [x , y ]−k · · · r(an) [x , y ]k r(bn) [x , y ]−k

which is nontrivial for large enough k (“boundary games”).

Recommendation

Dense embeddings of surface groups (Emmanuel Breuillard,
Tsachik Gelander, Juan Souto, Peter Storm, ’06).

Jonathan Fruchter yGGTX Parallel Sessions - Limit groups



Examples - continued

More formally, τγ(α) =

{
α α in left half surface

γαγ−1 α in right half surface

and for a1b1 · · · anbn ∈ π1(Σ) where ai and bi lie in π1(left) and
π1(right) respectively,

τγ(a1b1 · · · anbn) = a1 γ b1 γ
−1 · · · an γ bn γ

−1.

The map r ◦ (τγ)k : π1Σ→ F2 sends a1b1 · · · anbn ∈ π1(Σ) to

r(a1) [x , y ]k r(b1) [x , y ]−k · · · r(an) [x , y ]k r(bn) [x , y ]−k

which is nontrivial for large enough k (“boundary games”).

Recommendation

Dense embeddings of surface groups (Emmanuel Breuillard,
Tsachik Gelander, Juan Souto, Peter Storm, ’06).

Jonathan Fruchter yGGTX Parallel Sessions - Limit groups



Examples - continued

More formally, τγ(α) =

{
α α in left half surface

γαγ−1 α in right half surface

and for a1b1 · · · anbn ∈ π1(Σ) where ai and bi lie in π1(left) and
π1(right) respectively,

τγ(a1b1 · · · anbn) = a1 γ b1 γ
−1 · · · an γ bn γ

−1.

The map r ◦ (τγ)k : π1Σ→ F2 sends a1b1 · · · anbn ∈ π1(Σ) to

r(a1) [x , y ]k r(b1) [x , y ]−k · · · r(an) [x , y ]k r(bn) [x , y ]−k

which is nontrivial for large enough k (“boundary games”).

Recommendation

Dense embeddings of surface groups (Emmanuel Breuillard,
Tsachik Gelander, Juan Souto, Peter Storm, ’06).

Jonathan Fruchter yGGTX Parallel Sessions - Limit groups



Examples - continued

4. Extensions of centralizers:

Definition

Let G be a limit group and let g ∈ G . The extension of the
centralizer C (g) by a free abelian group A is the group

G ∗C(g) (C (g)× A) .

As before, define a map

f : G ∗C(g) (C (g)× A)→ G

which restricts to the identity on G and which maps A to large
powers of g . This shows that G ∗C(g) (C (g)× A) is fully residually
G (hence fully residually free).
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Marked groups

Definition

A marked group is a pair (G ,S) such that G is a group and S is a
finite generating set of G . Define Gn to be the set of marked
groups (G , S) such that |S | = n.

The space Gn is a metric space:

d((G ,S), (G ′,S ′)) = e−N

where N is the maximal integer such that radius N balls around 1
in X (G ,S) and X (G ′, S ′) are the same.

Lemma

G is a limit group ⇐⇒ G = limi→∞(Gi , Si ) in Gn and each Gi is
a free group.
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Some connections with logic

Recall that the first order theory of a group consists of the
sentences of the form

∀x1, . . . , xnx∃y1, . . . , yny∀z1, . . . , znz · · ·
k∨

i=1

m∧
j=1

wi ,j (x1, x2, . . .)
6=
= 1

which are true in G .

For example,

if G is nontrivial, the sentence ∃g g 6= 1 is in Th(G )

if A is abelian, the sentence ∀x∀y [x , y ] = 1 is in Th(A)

if H is torsion-free, the family of sentences
Φn = ∀x (x 6= 1 −→ xn 6= 1) is in Th(H)
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The universal theory

Theorem

A finitely generated group G is a (non-abelian) limit group ⇐⇒
G has the same universal (only ∀ quantifiers) as a (non-abelian)
free group.

sketch-of-Proof.

=⇒ we will show: if Φ is a universal sentence, the set
{(G ,S)| G |= Φ} is closed in Gn. Equivalently, the set
X = {(G ,S)| G |= ¬Φ} is open. For simplicity, assume
¬Φ = ∃x1 · · · ∃xn w(x1, . . . , xn) = 1 and G |= ¬Φ. So there are
g1, . . . , gn ∈ G s.t w(g1, . . . , gn) = 1. Let R > |w(g1, . . . , gn)|, so
the ball of radius e−R in Gn is in X .
⇐= let R > 0, the ball of radius R in G can be encoded by a
collection Φ of equations and inequations. There is a free group F
satisfying ∃x1 · · · ∃xnΦ which implies that G and F are at least
e−R close.
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Structure of limit groups

These connections with logic drove Sela and independently
Kharlampovich-Miyasnikov to study limit groups further, and they
played an important role in their positive answer of the following
question:

Question (Tarski’s question)

Do the first order theories of all non-abelian free groups coincide?

Actions of limit groups on real trees (a topic for another day) play
a major role in their proofs. Another key ingredient in their proof is
the hierarchical structure of limit groups.
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Iterated doubles

Recall the example of a surface group from earlier:

π1Σ can be obtained by doubling a free group: π1Σ = F2 ∗〈[x ,y ]〉 F2.
All limit groups can be obtained by iterating a similar construction:

Definition

A generalized double over a limit group G is a group H = A ∗C B
(or A∗C ) such that:

1 A,B are finitely generated.

2 C is a non-trivial and maximal abelian in both A and B.

3 ∃epimorphism f : H → G such that f |A and f |B are injective.

Theorem

G is a limit group ⇐⇒ G can be obtained by repeatedly taking
generalized doubles (and free products), starting with free groups.
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Iterated centralizer extensions

We already mentioned that if G is a limit group, then so is the
centralizer extension G ∗C(g) (C (g)× A).

Definition

A group G is an ICE-group (iterated extension of centralizers) if it
can be obtained from a free group by a finite sequence of
extensions of centralizers.

Theorem

G is a limit group ⇐⇒ G is a finitely generated subgroup of an
ICE group.
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ω−residually free towers

The next characterization of limit groups is slightly more
complicated, but includes a complete classification of all f.g groups
G s.t Th(G ) = Th(F ).

Definition

An ω−residually free tower is a space X = Xn, constructed floor by
floor:

1 The first floor X0 is a wedge of graphs, (multi-dimensional)
tori, and closed hyperbolic surfaces (χ < −1).

2 Xm+1 is obtained from Xm by attaching a floor of one of the
following kinds:

1 surface: a hyperbolic compact surface Σ with boundary,
attached to Xm by its boundary, such that there is a retraction
r : Xm+1 → Xm with r∗(π1Σ) non-abelian.

2 torus: a torus T k attached along one of its coordinates (i.e
{1} × · · · × S1 × · · · × {1}), such that the attaching curve
generates a maximal abelian subgroup of Xm.
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ω−residually free towers

Theorem

(Sela) G is a limit group ⇐⇒ it is a finitely generated subgroup
of the fundamental group of an ω−residually free tower.

Theorem

(Sela) Let G be a f.g group. Th(G ) = Th(F ) ⇐⇒ G is the
fundamental group of an ω−residually free tower whose
construction involves no tori.
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Properties of limit groups

1 Limit groups are torsion-free (∀x (x 6= 1→ xn 6= 1)).
2 Limit groups are commutative transitive

(∀x∀y∀z ([x , y ] = 1 ∧ [y , z] = 1→ [x , z] = 1)).
3 Any two elements of a limit group generate one of the

following groups: {1},Z,Z2,F2.
4 Limit groups are hyperbolic relative to free abelian groups

(Dahmani).
5 Limit groups are virtually special (Wise).
6 Finitely generated subgroups of limit groups are separable

(closed in the profinite topology). Limit groups also virtually
retract onto their finitely generated subgroups (Wilton).

Recommendation

Google “Marshall Hall’s Theorem”!

7 Every one-ended limit group contains a surface subgroup
(Wilton).

Jonathan Fruchter yGGTX Parallel Sessions - Limit groups



Properties of limit groups

1 Limit groups are torsion-free (∀x (x 6= 1→ xn 6= 1)).
2 Limit groups are commutative transitive

(∀x∀y∀z ([x , y ] = 1 ∧ [y , z] = 1→ [x , z] = 1)).
3 Any two elements of a limit group generate one of the

following groups: {1},Z,Z2,F2.
4 Limit groups are hyperbolic relative to free abelian groups

(Dahmani).
5 Limit groups are virtually special (Wise).
6 Finitely generated subgroups of limit groups are separable

(closed in the profinite topology). Limit groups also virtually
retract onto their finitely generated subgroups (Wilton).

Recommendation

Google “Marshall Hall’s Theorem”!

7 Every one-ended limit group contains a surface subgroup
(Wilton).

Jonathan Fruchter yGGTX Parallel Sessions - Limit groups



Properties of limit groups

1 Limit groups are torsion-free (∀x (x 6= 1→ xn 6= 1)).
2 Limit groups are commutative transitive

(∀x∀y∀z ([x , y ] = 1 ∧ [y , z] = 1→ [x , z] = 1)).
3 Any two elements of a limit group generate one of the

following groups: {1},Z,Z2,F2.
4 Limit groups are hyperbolic relative to free abelian groups

(Dahmani).
5 Limit groups are virtually special (Wise).
6 Finitely generated subgroups of limit groups are separable

(closed in the profinite topology). Limit groups also virtually
retract onto their finitely generated subgroups (Wilton).

Recommendation

Google “Marshall Hall’s Theorem”!

7 Every one-ended limit group contains a surface subgroup
(Wilton).

Jonathan Fruchter yGGTX Parallel Sessions - Limit groups



Properties of limit groups

1 Limit groups are torsion-free (∀x (x 6= 1→ xn 6= 1)).
2 Limit groups are commutative transitive

(∀x∀y∀z ([x , y ] = 1 ∧ [y , z] = 1→ [x , z] = 1)).
3 Any two elements of a limit group generate one of the

following groups: {1},Z,Z2,F2.
4 Limit groups are hyperbolic relative to free abelian groups

(Dahmani).
5 Limit groups are virtually special (Wise).
6 Finitely generated subgroups of limit groups are separable

(closed in the profinite topology). Limit groups also virtually
retract onto their finitely generated subgroups (Wilton).

Recommendation

Google “Marshall Hall’s Theorem”!

7 Every one-ended limit group contains a surface subgroup
(Wilton).

Jonathan Fruchter yGGTX Parallel Sessions - Limit groups



Properties of limit groups

1 Limit groups are torsion-free (∀x (x 6= 1→ xn 6= 1)).
2 Limit groups are commutative transitive

(∀x∀y∀z ([x , y ] = 1 ∧ [y , z] = 1→ [x , z] = 1)).
3 Any two elements of a limit group generate one of the

following groups: {1},Z,Z2,F2.
4 Limit groups are hyperbolic relative to free abelian groups

(Dahmani).
5 Limit groups are virtually special (Wise).
6 Finitely generated subgroups of limit groups are separable

(closed in the profinite topology). Limit groups also virtually
retract onto their finitely generated subgroups (Wilton).

Recommendation

Google “Marshall Hall’s Theorem”!

7 Every one-ended limit group contains a surface subgroup
(Wilton).

Jonathan Fruchter yGGTX Parallel Sessions - Limit groups



Properties of limit groups

1 Limit groups are torsion-free (∀x (x 6= 1→ xn 6= 1)).
2 Limit groups are commutative transitive

(∀x∀y∀z ([x , y ] = 1 ∧ [y , z] = 1→ [x , z] = 1)).
3 Any two elements of a limit group generate one of the

following groups: {1},Z,Z2,F2.
4 Limit groups are hyperbolic relative to free abelian groups

(Dahmani).
5 Limit groups are virtually special (Wise).
6 Finitely generated subgroups of limit groups are separable

(closed in the profinite topology). Limit groups also virtually
retract onto their finitely generated subgroups (Wilton).

Recommendation

Google “Marshall Hall’s Theorem”!

7 Every one-ended limit group contains a surface subgroup
(Wilton).

Jonathan Fruchter yGGTX Parallel Sessions - Limit groups



Properties of limit groups

1 Limit groups are torsion-free (∀x (x 6= 1→ xn 6= 1)).
2 Limit groups are commutative transitive

(∀x∀y∀z ([x , y ] = 1 ∧ [y , z] = 1→ [x , z] = 1)).
3 Any two elements of a limit group generate one of the

following groups: {1},Z,Z2,F2.
4 Limit groups are hyperbolic relative to free abelian groups

(Dahmani).
5 Limit groups are virtually special (Wise).
6 Finitely generated subgroups of limit groups are separable

(closed in the profinite topology). Limit groups also virtually
retract onto their finitely generated subgroups (Wilton).

Recommendation

Google “Marshall Hall’s Theorem”!

7 Every one-ended limit group contains a surface subgroup
(Wilton).
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Generalizations to non-free settings

Another active research topic is limit groups over non-free groups.
Some more (and less) recent work about limit groups over different
classes of groups:

1 Torsion-free hyperbolic (Sela) and hyperbolic (André) groups.

2 Toral relatively hyperbolic groups (Kharlampovich-Miyasnikov,
Groves).

3 Acylindrically hyperbolic groups (Groves-Hull, André-F).

4 (Coherent) RAAGs (Casals-Ruiz-Duncan-Kazachkov).
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