Subgroup Convergence in Generalized Lamplighter Groups

Josiah Owens

Mathematics Ph.D. Student, Texas A&M University, College Station, TX

July 2021

Lamplighter Groups

$$\mathcal{L} := (\mathbb{Z}/2\mathbb{Z}) \wr \mathbb{Z} := (\bigoplus_{\mathbb{Z}} \mathbb{Z}/2\mathbb{Z}) \rtimes \mathbb{Z}$$

$$\mathcal{L} := (\mathbb{Z}/2\mathbb{Z}) \wr \mathbb{Z} := (\bigoplus_{\mathbb{Z}} \mathbb{Z}/2\mathbb{Z}) \rtimes \mathbb{Z}$$

Generalized lamplighter groups:

$$\mathcal{L} := (\mathbb{Z}/2\mathbb{Z}) \wr \mathbb{Z} := (\bigoplus_{\mathbb{Z}} \mathbb{Z}/2\mathbb{Z}) \rtimes \mathbb{Z}$$

Generalized lamplighter groups: For $n \in \mathbb{N}$ and p prime,

$$\mathcal{L} := (\mathbb{Z}/2\mathbb{Z}) \wr \mathbb{Z} := (\bigoplus_{\mathbb{Z}} \mathbb{Z}/2\mathbb{Z}) \rtimes \mathbb{Z}$$

Generalized lamplighter groups: For $n \in \mathbb{N}$ and p prime,

$$\mathcal{L}_{n,p} := \bigoplus_{\mathbb{Z}} (\mathbb{Z}/p\mathbb{Z})^n \rtimes \mathbb{Z}$$

$$\mathcal{L} := (\mathbb{Z}/2\mathbb{Z}) \wr \mathbb{Z} := (\bigoplus_{\mathbb{Z}} \mathbb{Z}/2\mathbb{Z}) \rtimes \mathbb{Z}$$

Generalized lamplighter groups: For $n \in \mathbb{N}$ and p prime,

$$\mathcal{L}_{n,p} := \bigoplus_{\mathbb{Z}} (\mathbb{Z}/p\mathbb{Z})^n \rtimes \mathbb{Z} =: \mathcal{L}_n$$

$$\mathcal{L} := (\mathbb{Z}/2\mathbb{Z}) \wr \mathbb{Z} := (\bigoplus_{\mathbb{Z}} \mathbb{Z}/2\mathbb{Z}) \rtimes \mathbb{Z}$$

Generalized lamplighter groups: For $n \in \mathbb{N}$ and p prime,

$$\mathcal{L}_{n,p} := \bigoplus_{\mathbb{Z}} (\mathbb{Z}/_{p\mathbb{Z}})^n \rtimes \mathbb{Z} =: \mathcal{L}_n$$

We denote $\mathcal{A}_n \mathrel{\mathop:}= \bigoplus_{\mathbb{Z}} (\mathbb{Z}/_{p\mathbb{Z}})^n$

$$\mathcal{L} := (\mathbb{Z}/2\mathbb{Z}) \wr \mathbb{Z} := (\bigoplus_{\mathbb{Z}} \mathbb{Z}/2\mathbb{Z}) \rtimes \mathbb{Z}$$

Generalized lamplighter groups: For $n \in \mathbb{N}$ and p prime,

$$\mathcal{L}_{n,p} := \bigoplus_{\mathbb{Z}} (\mathbb{Z}/_{p\mathbb{Z}})^n \rtimes \mathbb{Z} =: \mathcal{L}_n$$

We denote $\mathcal{A}_n := \bigoplus_{\mathbb{Z}} (\mathbb{Z}/p\mathbb{Z})^n$ and let x denote the right shift by one on \mathcal{A}_n

Subgroup Representation

Each subgroup V of \mathcal{L}_n defines a triple of the form (s, V_0, v) ,

Each subgroup V of \mathcal{L}_n defines a triple of the form (s, V_0, v) , where $s \in \mathbb{N}$ is such that $s\mathbb{Z}$ is the projection of V on \mathbb{Z} ,

Each subgroup V of \mathcal{L}_n defines a triple of the form (s, V_0, v) , where $s \in \mathbb{N}$ is such that $s\mathbb{Z}$ is the projection of V on \mathbb{Z} , $V_0 = V \cap \mathcal{A}_n$ (which satisfies $x^s V_0 = V_0$),

Each subgroup V of \mathcal{L}_n defines a triple of the form (s, V_0, v) , where $s \in \mathbb{N}$ is such that $s\mathbb{Z}$ is the projection of V on \mathbb{Z} , $V_0 = V \cap \mathcal{A}_n$ (which satisfies $x^s V_0 = V_0$), and $v \in \mathcal{A}_n$ is such that $(v, s) \in V$.

Each subgroup V of \mathcal{L}_n defines a triple of the form (s, V_0, v) , where $s \in \mathbb{N}$ is such that $s\mathbb{Z}$ is the projection of V on \mathbb{Z} , $V_0 = V \cap \mathcal{A}_n$ (which satisfies $x^s V_0 = V_0$), and $v \in \mathcal{A}_n$ is such that $(v, s) \in V$. The v is unique up to addition of elements of V_0 .

Each subgroup V of \mathcal{L}_n defines a triple of the form (s, V_0, v) , where $s \in \mathbb{N}$ is such that $s\mathbb{Z}$ is the projection of V on \mathbb{Z} , $V_0 = V \cap \mathcal{A}_n$ (which satisfies $x^s V_0 = V_0$), and $v \in \mathcal{A}_n$ is such that $(v, s) \in V$. The v is unique up to addition of elements of V_0 . Any such triple defines a subgroup (via $\langle V_0, (v, s) \rangle$)

Each subgroup V of \mathcal{L}_n defines a triple of the form (s, V_0, v) , where $s \in \mathbb{N}$ is such that $s\mathbb{Z}$ is the projection of V on \mathbb{Z} , $V_0 = V \cap \mathcal{A}_n$ (which satisfies $x^sV_0 = V_0$), and $v \in \mathcal{A}_n$ is such that $(v, s) \in V$. The v is unique up to addition of elements of V_0 . Any such triple defines a subgroup (via $\langle V_0, (v, s) \rangle$) and two triples (s, V_0, v) and (s', V'_0, v') define the same subgroup if and only if s = s', $V_0 = V'_0$, and $v + V_0 = v' + V_0$.

Each subgroup V of \mathcal{L}_n defines a triple of the form (s, V_0, v) , where $s \in \mathbb{N}$ is such that $s\mathbb{Z}$ is the projection of V on \mathbb{Z} , $V_0 = V \cap \mathcal{A}_n$ (which satisfies $x^sV_0 = V_0$), and $v \in \mathcal{A}_n$ is such that $(v, s) \in V$. The v is unique up to addition of elements of V_0 . Any such triple defines a subgroup (via $\langle V_0, (v, s) \rangle$) and two triples (s, V_0, v) and (s', V'_0, v') define the same subgroup if and only if s = s', $V_0 = V'_0$, and $v + V_0 = v' + V_0$.

$$V = (s, V_0, v) = \langle V_0, (v, s) \rangle < \mathcal{L}_n$$

Space of Subgroups

Let
$$\mathcal{S}(\mathcal{L}_n) \subset \{0,1\}^{\mathcal{L}_n}$$

$V \leftrightarrow \mathbb{1}_V$

 $V \longleftrightarrow \mathbb{1}_V$

 $V_j \to V$

 $V \longleftrightarrow \mathbb{1}_V$

 $V_j \to V \iff \mathbb{1}_{V_j} \to \mathbb{1}_V$ pointwise

Topic of Interest

If
$$V_j = (s_j, V_{0_j}, v_j) \longrightarrow V = (s, V_0, v)$$
 as subgroups of \mathcal{L}_n ,

If
$$V_j = (s_j, V_{0_j}, v_j) \longrightarrow V = (s, V_0, v)$$
 as subgroups of \mathcal{L}_n , do the terms

 s_j, V_{0_i} , and v_j converge, respectively, to s, V_0 , and v in some sense?

 $V_{0_j} \to V_0$

 $V_{0_j} \to V_0$

Lemma

Lemma

Let G be a group and let $K, H, H_1, H_2, ... < G$ with $H_j \to H$ in $\mathcal{S}(G)$, i.e., $\mathbb{1}_{H_j}(x) \to \mathbb{1}_H(x)$ for all $x \in G$. Then $H_j \cap K \to H \cap K$.

Lemma

Let G be a group and let $K, H, H_1, H_2, ... < G$ with $H_j \to H$ in $\mathcal{S}(G)$, i.e., $\mathbb{1}_{H_j}(x) \to \mathbb{1}_H(x)$ for all $x \in G$. Then $H_j \cap K \to H \cap K$.

Thus if
$$V_j = (s_j, V_{0_j}, v_j) \longrightarrow V = (s, V_0, v)$$
, then $V_{0_j} \rightarrow V_0$

$(v_j, s_j) \to (v, s)$?

Note that $\mathbb{1}_{V_j}((v,s)) \to \mathbb{1}_V((v,s)) = 1$,

Hence, $s_j | s$ for large enough j.

Hence, $s_j|s$ for large enough j. So we may pass to a subsequence V_{j_k} where $s_{j_k} = s_{j_{k+1}} = t$ for all k with t|s.

Hence, $s_j|s$ for large enough j. So we may pass to a subsequence V_{j_k} where $s_{j_k} = s_{j_{k+1}} = t$ for all k with t|s.

Problem: The $v_j + V_{0_j}$'s may become too diffuse.

Hence, $s_j|s$ for large enough j. So we may pass to a subsequence V_{j_k} where $s_{j_k} = s_{j_{k+1}} = t$ for all k with t|s.

Problem: The $v_j + V_{0_j}$'s may become too diffuse.

Proposition

Hence, $s_j|s$ for large enough j. So we may pass to a subsequence V_{j_k} where $s_{j_k} = s_{j_{k+1}} = t$ for all k with t|s.

Problem: The $v_j + V_{0_j}$'s may become too diffuse.

Proposition

Let $V_j = (s_j, V_{0_j}, v_j) \rightarrow V = (s, V_0, v)$ as subgroups.

Hence, $s_j|s$ for large enough j. So we may pass to a subsequence V_{j_k} where $s_{j_k} = s_{j_{k+1}} = t$ for all k with t|s.

Problem: The $v_j + V_{0_j}$'s may become too diffuse.

Proposition

Let $V_j = (s_j, V_{0_j}, v_j) \rightarrow V = (s, V_0, v)$ as subgroups. If $\liminf(v_j + V_{0_j}) \neq \emptyset$,

Hence, $s_j|s$ for large enough j. So we may pass to a subsequence V_{j_k} where $s_{j_k} = s_{j_{k+1}} = t$ for all k with t|s.

Problem: The $v_j + V_{0_j}$'s may become too diffuse.

Proposition

Let $V_j = (s_j, V_{0_j}, v_j) \rightarrow V = (s, V_0, v)$ as subgroups. If $\liminf(v_j + V_{0_j}) \neq \emptyset$, then $s_j \rightarrow s$

Hence, $s_j|s$ for large enough j. So we may pass to a subsequence V_{j_k} where $s_{j_k} = s_{j_{k+1}} = t$ for all k with t|s.

Problem: The $v_j + V_{0_j}$'s may become too diffuse.

Proposition

Let $V_j = (s_j, V_{0_j}, v_j) \rightarrow V = (s, V_0, v)$ as subgroups. If $\liminf(v_j + V_{0_j}) \neq \emptyset$, then $s_j \rightarrow s$ and we may take the v_j 's so that they are eventually in $v + V_0$.

R. Grigorchuk, R. Kravchenko (2012)

On the Lattice of Subgroups of the Lamplighter Group arXiv: [1203.5800].

Thank You!