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Lamplighter Groups

Classic lamplighter group:

L := (Z/2Z) o Z := (
⊕
Z

Z/2Z)o Z

Generalized lamplighter groups: For n ∈ N and p prime,

Ln,p :=
⊕
Z
(Z/pZ)n o Z =: Ln

We denote An :=
⊕
Z
(Z/pZ)n and let x denote the right shift by one on An
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Subgroup Representation

Lemma (Grigorchuk-Kravchenko 2012)

Each subgroup V of Ln defines a triple of the form (s, V0, v), where s ∈ N is such
that sZ is the projection of V on Z, V0 = V ∩An (which satisfies xsV0 = V0), and
v ∈ An is such that (v, s) ∈ V . The v is unique up to addition of elements of V0.

Any such triple defines a subgroup (via 〈V0, (v, s)〉) and two triples (s, V0, v)
and (s′, V ′

0 , v
′) define the same subgroup if and only if s = s′, V0 = V ′

0 , and
v + V0 = v′ + V0.

V = (s, V0, v) = 〈V0, (v, s)〉 < Ln
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Space of Subgroups

Let S(Ln) ⊂ {0, 1}Ln be equipped with the relative product topology.

V ←→ 1V

Vj → V ⇐⇒ 1Vj
→ 1V pointwise
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Topic of Interest

If Vj = (sj , V0j , vj) −→ V = (s, V0, v) as subgroups of Ln, do the terms

sj , V0j , and vj converge, respectively, to s, V0, and v in some sense?
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V0j → V0

Lemma

Let G be a group and let K,H,H1, H2, ... < G with Hj → H in S(G), i.e.,
1Hj (x)→ 1H(x) for all x ∈ G. Then Hj ∩K → H ∩K.

Thus if Vj = (sj , V0j , vj) −→ V = (s, V0, v), then V0j → V0.
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(vj, sj)→ (v, s)?

Note that 1Vj ((v, s))→ 1V ((v, s)) = 1, so (v, s) ∈ Vj for j sufficiently large.

Hence, sj |s for large enough j. So we may pass to a subsequence Vjk

where sjk = sjk+1
= t for all k with t|s.

Problem: The vj + V0j ’s may become too diffuse.

Proposition

Let Vj = (sj , V0j , vj)→ V = (s, V0, v) as subgroups. If lim inf(vj + V0j ) 6= ∅,
then sj → s and we may take the vj ’s so that they are eventually in v + V0.
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Thank You!
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