AN EFFICIENT EVALUATION SCHEME FOR KPIs IN REGULATED URBAN TRAIN SYSTEMS

B. Adeline, P. Dersin, É. Fabre, L. Hérouët, and K. Kecir

International Conference
Reliability, Safety and Security of Railway Systems:
Modelling, Analysis, Verification and Certification

November 14-16, 2017
Pistoia, Italy

1 ALSTOM, FRANCE
2 INRIA RENNES – BRETAGNE ATLANTIQUE, FRANCE
Context

Rail systems are subject to **disturbances**.

(a) Signaling sys. failure
(b) Passenger blocking doors
(c) Bad weather cond.

Bad QoS:
- trains are **delayed** and **more crowded**
- 😊 **passengers**

QoS requirements:
UITP * defines
Key Performance Indicators (KPIs)
Non-compliance → financial penalties

*International association for public transports

Figure: Crowded station
Examples of KPIs:

(a) Punctuality

\[P = \frac{\text{# trips delayed by } + \text{than } x \text{ t.u.}}{\text{# trips}} \]

(b) Regularity

\[R = \frac{\text{# deps. meeting ref. headways w/ precision of } x \text{ t.u.}}{\text{# departures}} \]

Figure: Traffic regulators
Timetables

A timetable: an **idealized** representation of an execution of the system.

Timetable:
- departures
- arrivals

Uses:
- Passenger information
- Regulation
- Logs

Objective of regulation:
→ stick to a reference timetable.

Figure: Example of a timetable

Karim KECIR
AN EFFICIENT EVALUATION SCHEME FOR KPIs IN REGULATED URBAN TRAIN SYSTEMS
4 / 18
Objectives

Goals:
- evaluation of KPIs
- evaluation of regulation algorithms

Needs:
- realistic model with a good level of abstraction:
 - tracks, trains, time, constraints, stochasticity…
- integration of real traffic control algorithms
- fast simulations —— allow for Monte-Carlo
Outline

1. a model for simulation of urban rail systems
2. performed experiences and results
3. future work and improvements

Approach:

a framework for evaluation of regulation techniques through the measurement of KPIs
Modeling

Real topology:

Portion of the network:

Assumptions:
- fixed-block policy
- consider network constraints: min. dwell/run times, interlockings
Modeling (cont.)

Network portion:

Model equivalent:
Modeling (cont.)

Network portion:

Model equivalent:
Semantics of STPNs:
Semantics of STPNs:
Semantics

Semantics of STPNs:
Semantics of STPNs:
Semantics

Semantics of STPNs:

Block occupation constraints:
Semantics

Semantics of STPNs:

Block occupation constraints:
Construction:
Expolynomial functions

\[f(x) = \begin{cases}
\sum_{k=1}^{K} c_k \cdot x^{a_k} \cdot e^{-\lambda_k x} & \alpha < x < \beta \\
0 & \text{otherwise}
\end{cases} \]
Construction:

Expolynomial functions

\[f(x) = \left\{ \begin{array}{ll}
\sum_{k=1}^{K} c_k \cdot x^{a_k} \cdot e^{-\lambda_k x} & \alpha < x < \beta \\
0 & \text{otherwise}
\end{array} \right. \]

Inverse transform sampling:
Several timetables:

- **reference timetable**: target
- **active timetable**: execution + future
Several timetables:
- reference timetable: target
- active timetable: execution + future
Several timetables:
- reference timetable: target
- active timetable: execution + future
Regulation module

■ Regulation mode:
ASAP with change of dwell times
Regulation mode:
ASAP with change of dwell times
Regulation module

- **Regulation mode:**
 ASAP with change of dwell times

KPIs

data analysis

Karim KECIR

AN EFFICIENT EVALUATION SCHEME FOR KPIs IN REGULATED URBAN TRAIN SYSTEMS
Regulation mode:
ASAP with change of dwell times
Regulation module

- **Regulation mode:**
 ASAP with change of dwell times

```
10  16  29  35  41  47

5   7   6   9   5   3

n_{1ai-2}  n_{1ai-1}  n_{1ai}  n_{1ai+1}  n_{1ai+2}  n_{1ai+3}
```

```
23  31  38  44  54  60

5   7   6   9   5   3

n_{2ai-2}  n_{2ai-1}  n_{2ai}  n_{2ai+1}  n_{2ai+2}  n_{2ai+3}
```
Regulation mode:

ASAP with change of dwell times

\[n_{1ai-2} \]
\[n_{1ai-1} \]
\[n_{1ai} \]
\[n_{1ai+1} \]
\[n_{1ai+2} \]
\[n_{1ai+3} \]

\[n_{2ai-2} \]
\[n_{2ai-1} \]
\[n_{2ai} \]
\[n_{2ai+1} \]
\[n_{2ai+2} \]
\[n_{2ai+3} \]
Regulation module

- **Regulation mode:**
 ASAP with change of dwell times
Real case: Santiago’s metro, line 1

- interwined loops topology
- 27 stations
- 50 trains

Time-space graph:
Real case: Santiago’s metro, line 1

- intertwined loops topology
- 27 stations
- 50 trains

Time-space graph:
Real case: Santiago’s metro, line 1

- intertwined loops topology
- 27 stations
- 50 trains

Time-space graph:
Evolution of deviation (1 simulation - all stations)

Simulation speed: 1 simulation in approx. 35s (w/o display).
Monte-Carlo method

Monte-Carlo simulation method:
→ an experimental method to estimate a value.

X: random variable

$f_X(x)$: probability density function (PDF) of X

$F_X(x) = \mathbb{P}[x \leq X]$: cumulative distribution function of X

Central Limit Theorem:

For X_1, X_2, \ldots, X_n experiments when $n \to +\infty$,

then the empirical mean $\bar{X}_n = \frac{1}{n} \sum_{i=1}^{n} X_i$ tends towards $E[X]$.

Can compute:

• a satisfactory empirical mean \bar{X}_n

• a confidence interval $[\alpha_n, \beta_n]$

 w/ α_n and β_n resp. upper and lower bounds of the interval

• a probability $\mathbb{P}[E[X] \in [\alpha_n, \beta_n)]$ (precision)
Simulation campaign

- **n = 100** stochastic simulation runs:

 - mean deviations between reference and observed departure dates for all stations

 - stochastic simulation → different values
 - calculating mean value is not sufficient
Performance evaluation

- **Estimated parameter:**
 - the mean headway deviation, a regularity indicator.

- **Results:**
 - substantial disturbances \rightarrow regulation failed to cope with delay
 - observation of bunching phenomena

Confidence intervals for deviation between reference and observed mean headways per station
Future work

- Moving blocks:

- Distributions:
 - learning from real data
 - taking into account the non-markovian aspect of delays

- Regulation techniques:
 - headway equalizing regulation,
 - mixed regulation (punctuality + regularity)
 - progressive delay compensation,
 - objective regulation,
 - etc.
Future work

- Moving blocks:

- Distributions:
 - learning from real data
 - taking into account the non-Markovian aspect of delays

- Regulation techniques:
 - headway equalizing regulation,
 - mixed regulation (punctuality + regularity)
 - progressive delay compensation,
 - objective regulation,
 - etc.
Future work

- **Moving blocks:**

- **Distributions:**
 - learning from real data
 - taking into account the non-Markovian aspect of delays

- **Regulation techniques:**
 - headway equalizing regulation,
 - mixed regulation (punctuality + regularity)
 - progressive delay compensation,
 - objective regulation,
 - etc.
Future work

- **Moving blocks:**

- **Distributions:**
 - learning from real data
 - taking into account the non-Markovian aspect of delays

- **Regulation techniques:**
 - headway equalizing regulation,
 - mixed regulation (punctuality + regularity)
 - progressive delay compensation,
 - objective regulation,
 - etc.
Future work

- Moving blocks:

- Distributions:
 - learning from real data
 - taking into account the non-markovian aspect of delays

- Regulation techniques:
 - headway equalizing regulation,
 - mixed regulation (punctuality + regularity)
 - progressive delay compensation,
 - objective regulation,
 - etc.
Future work

- **Moving blocks:**

- **Distributions:**
 - learning from real data
 - taking into account the non-markovian aspect of delays
Future work

■ Moving blocks:

■ Distributions:
 • learning from real data
 • taking into account the non-Markovian aspect of delays

■ Regulation techniques:
 • headway equalizing regulation, • mixed regulation (punctuality + regularity)
 • progressive delay compensation, • objective regulation, • etc.