7th Developing International Geoarchaeology (DIG) Conference

4th – 7th September 2017
Newcastle University, UK
School of History, Classics and Archaeology
Get your radiocarbon results before your research fossilizes

✅ Results in as little as 2-3 days
✅ Queries answered within 24 hours
✅ Results available online

Radiocarbon Dating
Consistent Accuracy, Delivered on Time

Beta Analytic
www.radiocarbon.com
CONFERENCE PROGRAMME

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>3rd September</td>
<td>16.00 – 18.00</td>
<td>DRINKS RECEPTION</td>
</tr>
<tr>
<td>4th September</td>
<td>7.45 – 8.30</td>
<td>REGISTRATION</td>
</tr>
<tr>
<td></td>
<td>8.30 - 14.30</td>
<td>Geoarchaeology and Landscape</td>
</tr>
<tr>
<td></td>
<td>14.30– 18.20</td>
<td>Site formation – Early Prehistory to the Bronze Age</td>
</tr>
<tr>
<td></td>
<td>19.30</td>
<td>DINNER - BLACKFRAIRS</td>
</tr>
<tr>
<td>5th September</td>
<td>8.00 – 14.40</td>
<td>Site formation – The Iron Age to Medieval</td>
</tr>
<tr>
<td></td>
<td>14.40 – 18.20</td>
<td>Geoarchaeology and Material Culture</td>
</tr>
<tr>
<td>6th September</td>
<td>8.00 – 10.45</td>
<td>Heritage and the Historic Environment</td>
</tr>
<tr>
<td></td>
<td>10.45 – 11.00</td>
<td>PRIZE GIVING</td>
</tr>
<tr>
<td></td>
<td>11.00 – 17.30</td>
<td>WORKSHOPS</td>
</tr>
<tr>
<td>7th September</td>
<td>9.00 – 15.00</td>
<td>FIELDTRIP</td>
</tr>
</tbody>
</table>
Monday 4th September

GEOARCHAEOLOGY AND LANDSCAPE
Chair: Helen McKay

<table>
<thead>
<tr>
<th>Time</th>
<th>Speaker(s)</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.45 – 8.30</td>
<td>Registration and coffee (Foyer)</td>
<td>KEYNOTE From Green Sahara to Desert River: 6000 Years of Environmental Change in the Sudanese Nile Valley</td>
</tr>
<tr>
<td>8.30 – 9.00</td>
<td>Jamie Woodward</td>
<td>Geoarchaeological Approaches to the Palaeolithic Surface Record: Unravelling Early and Middle Stone Age Activity at Wadi Dabsa, SW Saudi Arabia</td>
</tr>
<tr>
<td>9.00 – 9.25</td>
<td>Robyn Inglis</td>
<td>Regional Stratigraphy, Tephrochronology, and Human Occupation of the Upper Susitna Basin, Central Alaska</td>
</tr>
<tr>
<td>9.25 – 9.50</td>
<td>John Blong</td>
<td>How the Late Pleniglacial landscape changes diversified the Gravettian record of Ach and Lone valleys</td>
</tr>
<tr>
<td>9.50 – 10.15</td>
<td>Alvise Barbieri</td>
<td>Allerød landscapes in the lowlands of NW Belgium: palaeoenvironmental reconstruction and geoarchaeological mapping approaches</td>
</tr>
<tr>
<td>10.15 – 10.40</td>
<td>Jeroen Verhegge</td>
<td>Coffee 30 mins (Foyer)</td>
</tr>
<tr>
<td>11.10 – 11.35</td>
<td>Katja Kothieringer and Astrid Röpke</td>
<td>Tracking prehistoric pastoralism in subalpine and alpine soils - preliminary results of the Montafon and the Silvretta Alps (Austria/Switzerland)</td>
</tr>
<tr>
<td>11.35 – 12.00</td>
<td>Wendy Matthews</td>
<td>Developing high-resolution theoretically-informed Geoarchaeology: Interdisciplinary approaches to changing human-fire relations in early agricultural environments and communities</td>
</tr>
<tr>
<td>12.00 – 12.25</td>
<td>Zachary Dunseth</td>
<td>Subsistence Practices in the Arid Negev Highlands during the Intermediate Bronze Age (c. 2500-1950 BCE): A Geoarchaeological Perspective</td>
</tr>
<tr>
<td>12.25 – 12.50</td>
<td>Nina Helt Nielsen</td>
<td>Manuring practices in the Danish Late Bronze and Early Iron Age: Geoarchaeological investigations of three Celtic field systems from Eastern Jutland, Denmark</td>
</tr>
<tr>
<td>12.50 – 13.50</td>
<td>Lunch and posters 50 min</td>
<td>Micro-contextual Investigations of Organic Matter in the Archaeological Sedimentary Record</td>
</tr>
<tr>
<td>13.50 – 14.10</td>
<td>Carolina Mallol</td>
<td></td>
</tr>
<tr>
<td>Time</td>
<td>Speaker</td>
<td>Title</td>
</tr>
<tr>
<td>------------</td>
<td>--------------------------</td>
<td>---</td>
</tr>
<tr>
<td>14.10 – 14.30</td>
<td>Carol Lang</td>
<td>Breathing new life into archaeological soils</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SITE FORMATION – EARLY PREHISTORY TO THE BRONZE AGE</td>
</tr>
<tr>
<td>14.30 – 14.50</td>
<td>Mareike Stahlschmidt</td>
<td>A Microcontextual Investigation of Combustion Features to Reconstruct Site Maintenance and Occupational Phases at the Upper Paleolithic Site of Satsurblia Cave, Georgia</td>
</tr>
<tr>
<td>14.50 – 15.10</td>
<td>Magnus Mathisen Haaland</td>
<td>Evaluating the nature and behavioral implications of laterally extensive occupation deposits in the Middle Stone Age levels of Blombos Cave, South Africa</td>
</tr>
<tr>
<td>15.10 – 15.30</td>
<td>Christopher Miller</td>
<td>Geoarchaeological investigations of Aghitu-3, and Upper Paleolithic cave site in the Armenian Highlands</td>
</tr>
<tr>
<td>15.45 – 16.15</td>
<td>Coffee 30 min</td>
<td></td>
</tr>
<tr>
<td>16.15 – 16.40</td>
<td>Diego Angelucci</td>
<td>Ciota Ciara cave and the Monte Fenera Palaeolithic (Italy): new data, new views</td>
</tr>
<tr>
<td>16.40 – 17.05</td>
<td>Tom Gardner</td>
<td>Towards high-resolution sediment chronologies: regular natural sediment incursions in burnt mound deposits as a proxy for time</td>
</tr>
<tr>
<td>17.05 – 17.30</td>
<td>Conor McAdams</td>
<td>Artefact preservation in saturated, tropical cave sediments: constraining site formation processes in the humid tropics through experimental reconstruction of sedimentary palaeoenvironments</td>
</tr>
<tr>
<td>17.30 – 17.55</td>
<td>Hans Huismann</td>
<td>Erosion of Archaeological Sites: Quantifying the threat using OSL and fall out isotopes</td>
</tr>
<tr>
<td>17.55 – 18.20</td>
<td>Rachel Kulick</td>
<td>Approaching Landscape Transformations through Urban Micromorphology at Bronze Age Palaikastro, Crete</td>
</tr>
<tr>
<td>19.30</td>
<td></td>
<td>Dinner Blackfriars</td>
</tr>
</tbody>
</table>

Tuesday 5th September

<table>
<thead>
<tr>
<th>Time</th>
<th>Speaker</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>SITE FORMATION – THE IRON AGE TO MEDIEVAL</td>
</tr>
<tr>
<td>8.00 – 8.30</td>
<td>Lisa Maher</td>
<td>KEYNOTE tbc</td>
</tr>
<tr>
<td>8.30 – 8.55</td>
<td>Matthew Dalton</td>
<td>Activity areas and geoarchaeological triage in the ancient Egyptian houses of Amara West, Sudan</td>
</tr>
<tr>
<td>Time</td>
<td>Speaker</td>
<td>Title</td>
</tr>
<tr>
<td>---------</td>
<td>-----------------------</td>
<td>--</td>
</tr>
<tr>
<td>8.55 – 9.20</td>
<td>David Brönnimann</td>
<td>Garbage in – wisdom out! Geoarchaeological investigation of sedimentation processes and waste disposal practices at the Latène settlement Basel-Gasfabrik</td>
</tr>
<tr>
<td>9.20 – 9.45</td>
<td>Luc Vrydaghs</td>
<td>Phytolith analysis on thin sections of urban dark earth in Brussels. A state of the art</td>
</tr>
<tr>
<td>9.45 – 10.10</td>
<td>Barbora Wouters</td>
<td>An integrated micromorphological and phytolith study of urban dark earths from Atuatuca Tungrorum (Tongeren, Belgium)</td>
</tr>
<tr>
<td>10.10 – 10.35</td>
<td>Phillipe Rentzel</td>
<td>Floors and activity surfaces of kitchen and tabernae in the Roman legionary camp of Vindonissa</td>
</tr>
<tr>
<td>10.35 – 11.10</td>
<td>Coffee 30 mins</td>
<td></td>
</tr>
<tr>
<td>11.10 – 11.35</td>
<td>Lenka Lisá</td>
<td>The prospects for geoarchaeological interpretations of Medieval dwelling floors; case studies from Czech Republic</td>
</tr>
<tr>
<td>11.35 – 12.00</td>
<td>Yannick Devos</td>
<td>Town development in Mons (Belgium): the contribution of the geoarchaeological study of Dark Earth</td>
</tr>
<tr>
<td>12.00 – 12.25</td>
<td>Marie Grousset</td>
<td>Medieval sunken buildings in the North of France: from samples to micro-features</td>
</tr>
<tr>
<td>12.25 – 12.50</td>
<td>Manuel Fernandez-Gotz</td>
<td>Geophysical surveys and digital elevation modelling at the Roman military complex of Ardoch, Scotland</td>
</tr>
<tr>
<td>12.50 – 13.50</td>
<td>Lunch and posters 60 min</td>
<td></td>
</tr>
<tr>
<td>13.50 – 14.15</td>
<td>Karen Milek</td>
<td>An Integrated Ethno-Geoarchaeological Study of Small-Scale Nomadic Herding Sites in Woodland Environments</td>
</tr>
<tr>
<td>14.15 – 14.40</td>
<td>Susanna Cereda</td>
<td>A Palace under the microscope - insights into a IVth mill. BCE representative building through a deposit-oriented approach</td>
</tr>
<tr>
<td>GEOARCHAEOLOGY AND MATERIAL CULTURE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chair: Lucy Wilson</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.40 – 15.05</td>
<td>Géraldine Fiers</td>
<td>Characterization and patina formation of flint used on prehistoric sites in NW Belgium</td>
</tr>
<tr>
<td>15.05 – 15.30</td>
<td>Donald Butler</td>
<td>Mineral Phases in Burned Salmonid Bone and their Relevance to Studies of Northern Hunter–Gatherers</td>
</tr>
<tr>
<td>15.30 – 16.15</td>
<td>Coffee and posters 45 min</td>
<td></td>
</tr>
<tr>
<td>Time</td>
<td>Speaker</td>
<td>Title</td>
</tr>
<tr>
<td>--------------</td>
<td>----------------</td>
<td>--</td>
</tr>
<tr>
<td>16.15 – 16.40</td>
<td>Giovanni Pesce</td>
<td>A multidisciplinary approach and a double level of validation for the radiocarbon dating of lime mortars</td>
</tr>
<tr>
<td>16.40 – 17.05</td>
<td>Ana Abrunhosa</td>
<td>Characterization of silica Mousterian tools from Navalmaíllo Neanderthal Rockshelter (Madrid Spain) using Petrography, SEM-EDX and portable XRF</td>
</tr>
<tr>
<td>17.05 – 17.30</td>
<td>Marta Lorenzon</td>
<td>Where are the mudbricks? A geoarchaeological analysis of Minoan earthen architecture</td>
</tr>
<tr>
<td>17.30 – 17.55</td>
<td>Lucy Wilson</td>
<td>Patterns of flint raw material procurement and use in the late Neolithic through Early Bronze Age at Ein Zippori, Israel</td>
</tr>
<tr>
<td>17.55 – 18.20</td>
<td>Aviad Agam</td>
<td>Blind test evaluation of consistency in macroscopic lithic raw material sorting</td>
</tr>
</tbody>
</table>

Wednesday 6th September

GEOARCHAEOLOGY: HERITAGE, ENVIRONMENT AND SUSTAINABILITY

Chair: John Blong

<table>
<thead>
<tr>
<th>Time</th>
<th>Speaker</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.00 – 8.25</td>
<td>Krista Gilliland</td>
<td>Rescuing the Ranch: Geoarchaeology and Historic Resources Impact Mitigation at the FM Ranch Campsite (EfPk-1) in Southern Alberta, Canada</td>
</tr>
<tr>
<td>8.25 – 8.50</td>
<td>Rowena Banerjea</td>
<td>All along the watchtowers! Balancing heritage protection and development of castle sites with scientific research potential of buried archaeology</td>
</tr>
<tr>
<td>8.50 – 9.15</td>
<td>Alex Brown</td>
<td>Late-glacial/early Holocene palaeoenvironments and evidence for the 8.2ka event in the southern North Sea Basin: new data from the Dudgeon Offshore Wind Farm</td>
</tr>
<tr>
<td>9.15 – 9.40</td>
<td>Virgil Yendell</td>
<td>The Battersea Channel Project: Geoarchaeological deposit modelling as a unifying and dynamic resource for historic environment mitigation and dissemination</td>
</tr>
<tr>
<td>9.40 – 10.05</td>
<td>Christin Heamagi</td>
<td>From shipwrecks to Sphagnum - Geoarchaeology in the marine zone</td>
</tr>
<tr>
<td>10.05 – 10.30</td>
<td>Lara Homsey Messer</td>
<td>Geoarchaeology and landscape history at the Squirrel Hill Archaeological Site, USA</td>
</tr>
<tr>
<td>10.45 – 11.00</td>
<td></td>
<td>SUMMARY AND PRIZE GIVING</td>
</tr>
</tbody>
</table>
Characterization of Silica Mousterian Tools from Navalmaíllo Neanderthal Rockshelter (Madrid-Spain) Using Petrography, SEM-EDX and Portable XRF

Ana Abrunhosa1,2, M. A. Bustillo1, Telmo Pereira1, Belén Márquez3, Alfredo Pérez-González4, Juan Luis Arsuaga5,6 and Enrique Baquedano3,7

1 ICAR-EHB - Interdisciplinary Center for Archaeology and Evolution of Human Behaviour. Faculdade das Ciências Humanas e Sociais. Universidade do Algarve, Portugal
2 MNCN- Museo Nacional de Ciencias Naturales. Department of Geology, Madrid, Spain
3 MAR- Museo Arqueológico Regional, Madrid- Spain
4 CENIEH - Centro Nacional de Investigación sobre la Evolución Humana. Burgos (Spain)
5 Departamento de Paleontología, Facultad de Ciencias Geológicas, Universidad Complutense de Madrid, Spain
6 Centro Universidad Complutense de Madrid-Instituto de Salud Carlos III de Investigación sobre la Evolución y Comportamiento Humanos, Spain
7 I.D.E.A. – Instituto de Evolución en África, Madrid, Spain

This work reports the geoarchaeological combined analysis of silicous raw materials used in Mousterian lithic tools from the Navalmaíllo Rockshelter by standard optical microscopy, SEM-EDX and portable XRF. Navalmaíllo Rockshelter is an Upper Pleistocene site in a karst complex of Upper Cretaceous dolomites intensely used by Neanderthals. It is located in the Lozoya river valley at about 1100 m.a.s.l. within the National Park of the Guadarrama Mountain Range in the Central System. This region is marked by a wide variety of lithic resources that are present in the archaeological context. The shelter measures c. 300 m² and shows a stratigraphic sequence with successive hominin occupations. Level F represents the most intense one containing hearths, lithic tools and faunal remains in situ. Seven archaeological samples consisting mainly of quartz were analyzed by the first two methods and per their textures three rock types have been defined. Type 1 and 2 are silica rocks that can be traced to an origin in veins or dykes, and type 3 is recognized as a chert formed by silification of Cretaceous dolomites. All of them are compatible to an origin in the Lozoya valley. A set of Mousterian lithic tools from different levels of the Navalmaíllo Rockshelter that correspond macroscopically with the seven samples were examined with a portable X-ray Fluorescence Spectrometer to evaluate if it was possible to differentiate the same three types. This multi-criteria process of combined analyses allowed to improve the characterization and lithological discrimination of the silica raw materials used in Pinilla del Valle and the recognition of probable geological sources to target on planned future surveys. With it we hope to better understand the extension of Neanderthal strategic and abstract thinking through the discovery of mental patterns, cognitive abilities, mobility, exploration and exploitation of the territory and the different ways of perceiving and occupying the landscape in the centre of the Iberian Peninsula.

Blind Test Evaluation of Consistency in Macroscopic Lithic Raw Material Sorting

Aviad Agam1 and Lucy Wilson2

1 Department of Archaeology and Near Eastern Cultures, Tel Aviv University, Israel
2 Department of Science, Applied Science and Engineering, University of New Brunswick, Canada

At the base of every lithic raw material archaeological study lies the macroscopic examination, wherein archaeological artefacts are sorted into petrographic (rock) types. For instance, flint artefacts can be sorted into types based on visual characteristics such as traits of the cortex, colour, and visible fossils. This process often serves as a platform for petrographic and/or geochemical analyses, aimed at accurately identifying the sources of these flints. However, as the human eye is a subjective tool, some inconsistencies in classification may rise. Since macroscopic classification is an essential stage in lithic raw material studies, a process for evaluating and increasing the reliability of macroscopic raw material analyses is needed. In this study, we undertook a blind test of raw material classification of archaeological material taken from the Acheulo-Yabrudian assemblages from Qesem Cave (Israel). Twelve students, with various degrees of experience and familiarity with the Qesem Cave material, but without prior experience in raw material classification, sorted 100 randomly-selected flint pieces into flint types, based on a previously established data base, which includes flint-type samples and their descriptions, after a brief tutorial process and a group-practice-classification of a sample of an additional 50 pieces. Also, L.W., who has regularly performed lithic raw material research for more than 30 years, and A.A., who has been studying raw materials since 2013 under the instruction of L.W., performed the same blind test. We then
compared the 14 sets of results, using L.W.’s results as an anchor. Our results show that experience and practice significantly affect the degree of consistency, as the participants who were more experienced with the Qesem material (albeit from undertaking typo-technological studies) achieved higher correlations with L.W.’s results. Also, while some flint types are harder to identify, leading to heterogeneous results, other flint types are easier to detect, resulting in a high correlation between participants. More generally, blind tests are demonstrated to be a valuable instrument in the process of raw material studies, pin-pointing repetitive inconsistencies, and thus improving the reliability of classification.

Ciota Ciara Cave and the Monte Fenera Palaeolithic (Italy): New Data, New Views

Diego E. Angelucci¹, Marta Arzarello², Maurizio Zambaldi¹

¹ Dipartimento di Lettere e Filosofia, Università di Trento, Italy
² Dipartimento di Studi Umanistici, Università di Ferrara, Italy

Situated at the southern border of western Alps, Monte Fenera is a low, mostly carbonate-built hill, hosting several palaeontological and archaeological sites – among which karstic caves bearing evidence of Palaeolithic occupations. The Monte Fenera sites have a long history within Alpine archaeology: they have been extensively explored since the 19th century, but information on their stratigraphy, chronology, formation and function remains incomplete or even lacking. Being among the few Palaeolithic cave-sites prior to LGM in the area, their systematic study is crucial for understanding human peopling and environmental evolution of the region in the Pleistocene. We here focus on the Ciota Ciara site, a complex, active cave modelled in Triassic dolostone. Systematic fieldwork at this cave resumed in 2009, along with new analyses and dating that has allowed us to revise the site’s archaeology and formation. Our contribution deals with the geoarchaeological analysis of the Palaeolithic succession that was unearthed at cave entrance. After accurate field description and sampling, we have performed routine sedimentological analyses, basic geochemical characterisation and micromorphological observation. Preliminary results suggest that the succession at the Ciota Ciara entrance is older than formerly assumed and may date to Middle Pleistocene – early Upper Pleistocene. Sediment accumulation in this sector of the cave results from consecutive events of concentrated flow and runoff from the inner karstic system, alternating with episodes of éboulis accumulation from wall/roof disintegration and short phases of surface stabilization. Post-depositional processes include frost action, hydromorphism and diagenesis, and weathering dynamics have selectively affected archaeological components, which thus show distinct degrees of preservation. We discuss the first results of the geoarchaeological revision of the Ciota Ciara site and set them in the context of Pleistocene cave archaeology and of the debate on the evolution of Neandertals in Mediterranean Europe.

All Along the Watchtowers! Balancing Heritage Protection and Development of Castle Sites with Scientific Research Potential of Buried Archaeology

Rowena Banerjea¹, Hans Huisman², Cristiano Nicosia³, Quentin Borderie⁴, Jesper Colenberg⁵, Irène Béguier⁶, Melinda Bizri⁷, Guillermo García-Contreras Ruiz⁸, Bénédicte Guillot⁹, Aleks Pluskowski¹, Xavier van Dijk¹⁰, Jan van Doesburg²

¹ University of Reading, UK
² Cultural heritage agency of the Netherlands
³ CReA- Université Libre de Bruxelles, Belgium
⁴ Département d'Eure-et-Loir, CNRS - UMR 7041 ArScAn "Archéologies Environnementales", France
⁵ Independent, The Netherlands
⁶ Service départemental d’archéologie du Calvados, France
⁷ Université de Bourgogne / UMR 6298 ARTEHIS - "Archéologie, Terre, Histoire et Sociétés", France
⁸ Universidad de Granada, Spain
⁹ Institut National de Recherches Archéologiques Préventitives (INRAP), France
¹⁰ RAAP, The Netherlands
Successive waves of conquest and colonisation throughout the Middle Ages have shaped society and the cultural geography of modern Europe. Castles and their remains are iconic remnants from that period, and as such form an important part of our cultural heritage. Across Europe, only recently is the scientific potential of the buried archaeological deposits within castles being realised, which can be overlooked in favour of the protection and consolidation of standing remains, and developments such as reconstruction and rebuilding projects. This paper reviews the state of archaeological remains within medieval castle sites across Europe (Estonia, France, Latvia, Poland, Italy, Spain and The Netherlands), their scientific value and potential threats to the buried archaeology based on geoarchaeological research. No standing remains survive at Karksi and Elbląg (Estonia and Poland) but both sites contained exceptionally well preserved waterlogged occupation deposits dating to the initial colonisation during Crusades. In Caen, Gien (both in France), Elbląg, and Kessel (The Netherlands), excavations were done ahead of development. They are examples of sites where different heritage perspectives had to be balanced due to development and rebuilding. In the Baltic, Dutch, French and Italian examples, micromorphology was instrumental in discovering that buried deposits contained the remains of (probably wooden) buildings from a first construction phase, or in characterising the changing use, and, following decay, the re-use occupation of structures. Molina de Aragón (Spain) is located in a UNESCO geopark. Geoarchaeological samples were collected recently from profiles created during previous excavations, which were conducted to support the architectural restoration but without a scientific focus on the medieval stratigraphy. These examples highlight the importance of a geoarchaeological perspective for both identifying and conserving cultural deposits within castles. They not only demonstrate the archaeological value of buried archaeological deposits, but also stress the threats to them due to development, rebuilding, and conservation.

How the Late Pleniglacial Landscape Changes Diversified the Gravettian Record of Ach and Lone Valleys

Alvise Barbieri¹, Andreas Taller², Felix Bachofer³, Geraldine Quénéhervé⁴, Nicholas J. Conard,¹²,³ Chris E. Miller⁵

¹ Institute for Archaeological Sciences, University of Tübingen, Germany
² Department of Early Prehistory and Quaternary Ecology, University of Tübingen, Germany
³ Department of Geosciences, University of Tübingen, Germany
⁴ Institute of Geography, Faculty of Science, University of Tübingen, Germany
⁵ Senckenberg Centre for Human Evolution and Paleoenvironment, University of Tübingen, Germany

The Ach and Lone valleys of the Swabian Jura (In Bade-Württemberg, Southwest Germany) represent a key region in the study of human migrations in central Europe. In contrast with the Aurignacian and the Magdalenian, the Gravettian record preserved in the cave sites of these two valleys is poorer and appears variable. Previous lithic analyses conducted on the Gravettian stone tools of the Ach Valley have discovered multiple refitted artefacts found across several different cave sites, which might indicate that this part of the Jura was repeatedly occupied by the same group of humans. In contrast, in the Lone Valley material and ¹⁴C dating indicative of the Gravettian occupation are sparser and are largely redeposited within younger sediments. Over the past years we have investigated the natural processes that shape the landscape and the cave deposits of these two valleys. By combining a variety of methods (including geophysical prospection, coring, micromorphology, FTIR, and radiocarbon dating) we demonstrate that alternating phases of soil formation, hillside denudation, river valley incision and floodplain aggradation have been the major processes active in the Lone and Ach valleys throughout the Pleistocene and Holocene. Here we evaluate how local variables (such as valley gradient, drainage basin extent, size and relative elevation of caves) influenced these processes and their impact on cave sedimentation. Our results suggest that a phase of river valley incision and subsequent, intensive mass wasting of the hillsides promoted the erosion of Gravettian-aged deposits from the caves of these valleys. The eroded sediments accumulated at the foot of the hill, where they promoted a phase of floodplain aggradation. In the Lone Valley this final phase of aggradation occurred at a lower rate in comparison with the Ach Valley. As a result the effect of the drop in base level lasted longer in the Lone Valley, thereby promoting further erosion of the cave deposits. We conclude that the record of Gravettian-aged occupation is variable across the two valleys as a result of natural landscape-scale geomorphological processes.

Regional Stratigraphy, Tephrochronology, and Human Occupation of the Upper Susitna Basin, Central Alaska

John C. Blong
The mountainous upland landscapes of central Alaska play an important role in understanding key issues in Beringian archaeology, including human adaptation to new landscapes and changes in landscape use in response to environmental change. This paper presents the geomorphological and paleovegetation record of the upper Susitna River basin in the central Alaska Range, and discusses late Pleistocene and Holocene landscape and vegetation change and how this affected human use of this upland landscape. Geomorphological data suggest that the last significant glacial ice sheet covering the upper Susitna basin receded by 14,000-13,000 cal yr BP. Following deglaciation, there is evidence for high-energy aeolian activity spanning the late Pleistocene and early Holocene. There are at least three Holocene tephra falls recognized in the upper Susitna basin, and there are preliminary indications that tephra fall may have affected vegetation patterns in the study area. Initial human occupation occurred by 11,000-10,500 cal yr BP, at least 2000 years after the end of full glacial conditions, and 1000 years after first evidence of landscape recovery. Early Holocene use of the study area appears to have been ephemeral, but human activity intensified in the middle and late Holocene as modern vegetation patterns were established. There is evidence for a hiatus in human occupation of the upper Susitna region during the middle Holocene, possibly related to deposition of the most substantial tephra fall in the study area.

David Brönnimann¹, Norbert Spichtig², Guido Lassau², Philippe Rentzel¹

¹ Integrative Prehistory and Archaeological Science, University of Basel, Switzerland
² Archaeological service of canton Basel-Stadt, Basel, Switzerland

Basel-Gasfabrik is an unfortified Late Iron Age settlement with domestic and economic structures and two associated cemeteries. It is among the large, unfortified, proto-urban settlements playing a major role in the La Tène period and which are usually connected with trade and craft production. Since 1911, numerous excavations revealed more than 600,000 artefacts and 900,000 animal bones, mostly from infilled storage or cellar pits. The majority of these findings are associated with dark sediments which contain much organic and inorganic garbage and form a major component of the materials used to fill in the settlement’s pits. Thus the question is raised as to how and where those dark sediments were formed before they were used as pit backfill. This question will be addressed by means of micromorphological and geochemical analysis of well-preserved settlement features. House floors, trampled outdoor areas, ditches and pits were analysed in order to characterize different activities and their corresponding sediments. Additionally, investigations of posthole backfills reveal information about the abandonment of buildings. Our results show that there are significant differences in sediment compositions, associated anthropogenic components and taphonomic proxies between features. The geoarchaeological data are supplemented by bioarchaeological and archaeological findings to arrive at comprehensive assessment of syn- and post depositional processes at Basel-Gasfabrik. This permits the reconstruction of waste disposal practices, activity areas and resource management, which is essential for interpreting complex assemblages like the inventory of an infilled pit. Furthermore, an insight into the daily life of Late Iron Age inhabitants in the settlement of Basel Gasfabrik was gained.

Late-Glacial/Early Holocene Palaeoenvironments and Evidence for the 8.2 ka Event in the Southern North Sea Basin: New Data from the Dudgeon Offshore Wind Farm

Alex Brown¹,², Jack Russell¹, Rob Scaife³, John Whittaker⁴, Sarah Wyles⁵

¹ Wessex Archaeology, Salisbury, UK
² Department of Archaeology, School of Archaeology, Geography and Environmental Sciences, University of Reading, UK
³ Geography and Environmental Sciences, University of Southampton, UK
⁴ Department of Palaeontology, The Natural History Museum, London, UK
⁵ Cotswold Archaeology, Hampshire, UK

It is well known that the North Sea conceals an extensive Late Pleistocene and early Holocene palaeolandscape. Archaeological finds from the seabed show this former landscape was occupied by humans during periods when sea-levels were significantly lower than today and the British Isles formed the north-western promontory of the European
Mineral Phases in Burned Salmonid Bone and their Relevance to Studies of Combustion Features at Northern Hunter-Gatherer Sites

Don H. Butler and Ruth Shahack-Gross

Laboratory for Sedimentary Archaeology, Department of Maritime Civilizations, University of Haifa, Israel

Primarily owing to poor preservation, ichthyoarchaeological evidence is uncommon at hunter-gatherer sites from various regions and timeframes. In particular, the absence of salmonid bones is conspicuous at many ancient sites across the Arctic region. Given ethnoarchaeological observations on discard of meal remains into domestic hearths at fisher camps, this research focuses on the development of heat-related geoarchaeological indicators useful for identifying salmonid fishing economies. Specifically, heat altered bone mineral is explored as a prospective marker for fish remains discarded in domestic hearth contexts. A series of laboratory incineration experiments was used to characterize the mineralogy of burned salmonid verteabrae, in comparison to bones of northern game mammals and birds. Fourier transform infrared spectroscopy and X-ray diffraction distinguished the formation of high quantities of the phosphate mineral beta magnesium tricalcium phosphate at temperatures as low as 600°C exclusively in salmon bones. In other fish, mammal, and bird bones studied this mineral formed only above 800°C. This indicates that the presence of beta magnesium tricalcium phosphate is expected in combustion features at hunter-gatherer salmonid fishing sites. An archaeological case study of a Mid-Holocene hunter-gatherer site located on a salmon migration route in northern Finland is underway. This approach has promise as a new means of further evaluating the temporal, geographic, and cultural scope of salmonid harvesting among northern hunter-gatherers.

A Palace Under the Microscope - Insights into a IVth Mill. BC Representative Building Through a Deposit-Oriented Approach

Susanna Cereda

University of Vienna, Department of Prehistoric and Historical Archaeology, Austria

Located at the crossroad of the main civilizations of the Near East, the site of Arslantepe (Malatya, Turkey) reveals an extremely long occupation sequence, marked by several socio-political and cultural transformations. The most striking of these shifts occurred during the Late Chalcolithic period, in the so-called VIA phase of the site (3350-3000 BC), with the development of a political and economic centralized system, which is exemplified by the construction of a monumental mud-brick complex labelled “Palace” for its articulation in interconnected, multi-functional areas. In this perfectly sealed context (destroyed by a fire), archaeologists recognized two temples, a storeroom complex, administrative areas with thousands of cretulacae (clay sealings), a monumental gate, corridors and courtyards. More than just spaces, these buildings were socially-constructed places, and they offer an excellent chance to explore those dynamics involved in the continuous renegotiation of the social, economic and political meanings that structured the IVth millennium communities. Using a deposit-oriented approach, I integrate the traditional analysis of in-situ finds and architectural features with the microscopic material traces buried in the physical space, and thus aim at enriching the archaeological narrative by investigating the materiality of spaces and of performed actions. In this paper, I present the preliminary results of the micromorphological and chemical analyses carried out in one of the of most recently excavated and best preserved rooms, characterised by a large central platform with a built-in fireplace. This study offers a high-resolution investigation of the
consumption modes of this monumental space, by focusing on the nature of deposits and their spatial variations, and hint at the occurrence of specific practices.

Activity Areas and Geoarchaeological Triage in the Ancient Egyptian Houses of Amara West, Sudan
Matthew Dalton
Charles McBurney
Laboratory for Geoarchaeology, University of Cambridge, UK

Recent largescale micromorphological and geochemical analyses of sedimentary house floors and occupation deposits from the New Kingdom Egyptian settlement of Amara West provide strong evidence for a range of domestic activities including craft and food production, animal penning and the practice of household magic. The presentation will draw upon this case study to illustrate the potentials and challenges of undertaking robust geoarchaeological activity area identification in large and microstratigraphically well-preserved settlements under wide-scale excavation. In the context of inevitably limited time and resources, the presentation will consider forms of geoarchaeological ‘triage’ and reflect on the successes (and limitations) of a few of the hard choices made in formulating this project’s sampling strategy: is it better to explore houses or neighbourhoods in detail? Should spatial or temporal depth be targeted? What activities are we likely to miss, and how will we know if we’ve missed them? The presentation will ultimately consider how micro-scale geoarchaeological methodologies can and cannot be used to contribute to ‘big questions’ of social organization and household specialization.

Town Development in Mons (Belgium): The Contribution of the Geoarchaeological Study of Dark Earth
Yannick Devos1, Olivier Collette2, Luc Vrydaghs1, Sophie Loicq3

1 Centre de Recherches en Archéologie et Patrimoine, Université Libre de Bruxelles, Belgium
2 Département du patrimoine/Direction de l’archéologie, Service Public de Wallonie
3 Recherches et Prospections en Archéologie (RPA asbl)

During the excavation on the site of Mundaneum in the historical centre of Mons in 2013-2014 thick, dark coloured, humic, homogeneous units covering the whole excavated surface were discovered (=Dark Earth sensu lato, Nicosia & Devos 2014). Interpretation of Dark Earth based on traditional archaeological methods alone has shown to be a difficult, if not impossible, task. Over the last decades geoarchaeology, and soil micromorphology in particular, has shown to be a particularly valuable approach. It enables us to discriminate the major processes involved in its formation and to detect human activities and natural events triggering them. Furthermore a chronology of events can be established. The geoarchaeological study of the Dark Earth of the site of Mundaneum allowed us to document the urbanisation process of the site and its surroundings. During the oldest phase the area and its surroundings showed a clear rural character. In the next phase abundant domestic, artisanal and construction waste were recorded, indicating a denser occupation and the incorporation of the area within the urban tissue. The excavated area itself remained open as witnessed by the important bioturbation and was probably used as backyard.

Subsistence Practices in the Arid Negev Highlands During the Intermediate Bronze Age (c. 2500-1950 BC): A Geoarchaeological Perspective
Zachary Dunseth1,2, Israel Finkelstein3, Ruth Shahack-Gross2

1 Institute of Archaeology, Tel Aviv University, Israel
2 Laboratory for Sedimentary Archaeology, Department of Maritime Civilizations, University of Haifa, Israel

A massive settlement phenomenon characterizes the arid Negev Highlands (southern Israel) during the Intermediate Bronze Age (IBA) (ca. 2500-1950 BC). However, the subsistence practices of this large desert population are poorly understood. Previous work has suggested the existence of two complementary elements during the period: large central sites specialized in copper processing and production, and smaller ephemeral sites supported by nomadic-pastoralism. Both settlement types have been assumed to have practiced livestock rearing and dry seasonal farming. However, to date,
these assumptions have been based on ceramic typologies, presence of flint blades, grinding stones, and scant zooarchaeological assemblages. Direct evidence for either herding or cultivation is very limited. Recent geoarchaeological work at other sites in the Negev Highlands has shown the potential for recovering direct evidence for subsistence practices through the identification of sediments containing degraded animal dung, followed by the analysis of phytoliths from this material. The latter reflect animal foddering practices, and thus whether cereal cultivation was carried out. Following this approach, two central and one ephemeral IBA sites were excavated. A study of a second ephemeral site is underway. The excavations focused on sediment sampling from varied contexts (habitation floors, courtyards, pits etc.). Analyses included mineralogical characterization via FTIR spectroscopy, extraction and quantification of phytoliths as well as morphotype analysis, extraction and quantification of ash pseudomorphs and dung spherulites, and XRF analyses to detect evidence for copper production/processing. The results show the presence of ancient livestock dung at the ephemeral site, with phytolith assemblages indicative of free-ranging animal husbandry. In contrast, the two central sites show no evidence for any type of food production or copper processing activities. These results force a new discussion about subsistence and society at central sites and the role of larger international economies in the arid Negev Highlands during the Intermediate Bronze Age.

Exploring Alzubarah Archaeological Site in Relation to its Physical Geographical Characteristics: Interdisciplinary Approach

Sherine El-Menshawy
Qatar University, College of Arts and Science, Humanities Department, History Program, Qatar

Alzubarah city is the fountainhead of Qatar’s ancestral culture which galvanizes the national identity of the land and its people and weaves them into one fabric of essential events, indigenous symbols, and historical narratives. In 2013 the city was classified by UNESCO as a World Heritage Site in recognition of its importance not only for Qatar, but also for the world’s community. Established prior to the 18th century, the city grew in the 1760s and in the subsequent decades became a vibrant urban center in the Arabian Gulf. The city thrived on pearl harvesting and as a trade center between the Arabian Gulf and south and southeast Asia especially in the late 18th and early 19th centuries. After experiencing political conflict in the 19th century, life in the city all but disappeared in the early twentieth century after the development of artificial methods for cultivating pearls in Japan and other countries as well as the decline in the global pearl trade precipitated by the two world wars. These economic shifts led to an eventual collapse of the natural pearl harvesting industry. The remaining population of Alzubarah abandoned the city in pursuit of alternative economic activities in a variety of other places. This sudden and peaceful abandonment of the city preserved its architecture intact under layers of desert sand which covered it until it was currently excavated. Even though limited in scale, excavations allowed scholars a precious opportunity to peer into the history of Qatar and the region frozen in time and ground it in pristine archaeological evidence. The aim of this project is to examine the relationship between the geographical characteristics at Alzubarah site to understand the physical geography that led the ancient man to inhabit this specific site. The research raises the question of how people adapted to the dry desert climate leading to the establishment of ancient Qatari civilization. This current research involves an interdisciplinary approach which includes physical geography by studying the geographic location, the headlands surrounding it, the topography, the sea & the desert, the valleys’ deposits and the water wells. This study also includes investigating and analyzing the discovered archaeological remains such as pottery, stone vessels, fish & deer bones, shells, fire pits and ornaments by the Ancient History & Archaeology team. This history/archaeology team and physical geography team will help in identifying human economic and social activities at the Alzubarah site aligned with its physical characteristics.

Geophysical Surveys and Digital Elevation Modelling at the Roman Military Complex of Ardoch, Scotland

Manuel Fernández-Götz1 and Felix Teichner2

1 School of History, Classics and Archaeology, University of Edinburgh, UK
2 Faculty of History and Cultural Studies, Philipps-Universität Marburg, Germany

The Roman military complex of Ardoch (Braco, Perth & Kinross) is one of the most important archaeological sites for the study of Rome’s military expansion in northern Britain. It comprises the remains of a main fort with a rectangular area of around two hectares, and at least five, partly overlapping marching camps dating between the 1st and 3rd centuries AD.
They constitute one of the best-preserved series of military earthworks in the whole of the Roman Empire. During the course of a fieldwork campaign carried out in March 2016, a geomagnetic plan of the entire main fort was completed, providing new insights into the internal organisation and the defences. Some selected areas were also analysed by means of geoelectric. This research was complemented with a drone flight of the main fort and some adjacent areas, producing a high-resolution digital elevation model of the archaeological site. The large-scale combination of drone flight and geophysical surveys represents an innovative research project in the archaeology of the Roman Gask Ridge Frontier.

Characterization and Patina Formation of Flint used on Prehistoric Sites in NW Belgium

Géraldine Fiers¹, Tim De Kok², Éva Halbrucker³, Philippe Crombé² & Veerle Cnudde³

¹ Pore-scale Processes in Geomaterials Research Group (PProGRess)/UGCT, Department of Geology, Ghent University, Belgium
² Research group Prehistory of Europe, Department of Archaeology, Ghent University, Belgium

This study aims at analyzing the mineralogical and chemical characteristics of raw flint material, used for the production of prehistoric stone tools in NW Belgium. Material used in this study includes flint from outcrops in the Mons Basin and flint found on the beaches of the Western Scheldt. Due to the formation process, raw flint material is defined by a wide variety of internal structures, chemical variations and impurities. Moreover, weathering processes can alter the flint material and cause additional changes making the study of this material complex. Weathering of flint is mostly expressed as patination which is linked to the geological and depositional context. Therefore it is important to understand how the flint characteristics influence their weathering behavior. The first goal of this study is to investigate the characteristics of unaltered flint using a combination of traditional techniques such as microscopic analysis, XRF and SEM-EDX. Secondly, structural and chemical differences between unaltered flint, cortex (rim on flint nodules found in chalk beds) and patina will be investigated using the above mentioned methods together with non-destructive high-resolution X-ray computed tomography (micro-CT). The possibilities of micro-CT, providing 3D information of internal structures of flint, will be explored since this technique is not frequently used in studies analyzing flint material. In particular, both natural and laboratory-induced patinas will be analyzed using micro-CT. White patinas are reproduced by experiments with alkaline solutions in relatively short time. This way, the patination process and the relation between patina formation and flint characteristics can be studied. The results of these investigations will later be considered in the analysis of archaeological artefacts from Mesolithic-Neolithic sites in the Scheldt valley, NW Belgium.

Towards High-Resolution Sediment Chronologies: Regular Natural Sediment Incursions in Burnt Mound Deposits as a Proxy for Time

Tom Gardner

School of History, Classics and Archaeology, University of Edinburgh, UK

Burnt mound sites represent the most common application of fuel-use strategies across the Bronze Age landscapes of Great Britain and Ireland. Multiproxy scientific examinations of burnt mound deposits are becoming more common, especially through rigorous planning consent and good commercial archaeological practice. However, radiocarbon based chronologies often struggle to offer high-resolution results. This leads to the environmental evidence retrieved from burnt mound sites often being homogenised by spit-based bulk sampling, and offering a reduced resolution on changing human practices. This study will assess a suite of Neolithic to late Bronze Age burnt mound sites across the Orkney archipelago and north Northumberland, all of which have been subjected to high-resolution micromorphological and XRF analysis. Amongst many other findings, these analyses have indicated that 1. Annually/sequentially deposited natural sediments can appear in otherwise homogenous anthropic deposits when assessed under the microscope 2. If properly modelled by examining local hydrological and sedimentological processes, these can be used to subdivide deposits, and provide high-resolution distinctions between deposits at a macroscale 3. This can then be used to establish tighter chronologies and site-use biographies, and in turn to differentiate between archaeobotanical, geochemical, and geoarchaeological assemblages of extracted and disarticulated material. Some sub-coastal burnt mounds were regularly inundated by Aeolian sands in periods of increased storminess, providing microscopic (and sometimes macroscopic) seriation of sediments and components. The same can be seen with alluvial flood deposits encroaching on burnt mounds in lacustrine basins. Through micromorphology and concurrent XRF analysis, it may be possible to model these natural sediment incursions and use them to increase the resolution of existing strands of data on ecology, environment, and direct indicators of human
activity. Ultimately, it is argued that multidisciplinary geoarchaeological and environmental analyses of landscapes which see regular natural sediment deposition can lead to new avenues of research and interpretation.

Rescuing the Ranch: Geoarchaeology and Historic Resources Impact Mitigation at the FM Ranch Campsite (EfPk-1) in Southern Alberta, Canada

Krista Gilliland¹, Matthew Bolton², and Alwynne Beaudoin²

¹ Western Heritage, Alberta, Canada
² Royal Albert Museum, Edmonton, Alberta, Canada

Heavy rainfall in June 2013 triggered catastrophic flooding in southern Alberta that accelerated natural erosional and depositional processes, altering the Bow River valley and damaging many archaeological sites in the area. In response, the Alberta government funded a multi-year Flood Impact Assessment Program, intended to assess and mitigate (where possible) the damage to sites along the Bow and its tributaries. Under this program, Western Heritage was contracted to undertake mitigative excavations and geoarchaeological studies at the FM Ranch Campsite (EfPk-1), part of an ancestral Indigenous campsite/bison jump complex that is one of the Province’s most highly valued historic resources. The primary objectives of this work were to establish stratigraphic and chronological frameworks for the site, and to document and preserve the numerous cultural features observed to be eroding along riverbank exposures. Our approach included standard field-based methods, but emphasized detailed stratigraphic descriptions, magnetometry, luminescence profiling, and handheld magnetic susceptibility. Laboratory-based methods included AMS radiocarbon dating and soil micromorphological and bulk sedimentological analysis of six exposed combustion features. Macrofossil analysis of the combustion features was also undertaken in collaboration with the Royal Alberta Museum. Our results indicate that at least seven occupations took place on different parts of the landform during the past 1300 years. The analysed combustion features demonstrate variations in their use history, with some representing intact single or multiple uses, while others have been culturally redeposited. Occupations in the southern portion of the site occurred beginning about 900 years ago and were likely related to use of the adjacent bison jump. However, occupations in the northern portion likely occurred before the southern portion was stable enough for occupation, before the bison jump was in use. This work has wider resonance with issues such as increasing the interpretive value of data recovered during archaeological mitigations, and the importance of adopting an holistic approach to investigating archaeological sites on the northern North American Great Plains.

Medieval Sunken Buildings in the North of France: From Samples to Micro-Features

Marie Grousset1, Cécilia Cammas¹, Vincent Marchaisseau1, Marie-Cécile Truc¹, Gerben Verbrugghe²

INRAP, Institut National de Recherches Archéologiques Préventives, France
Department of Archaeology, Ghent University

Thirty years of development of preventive archaeology in France have permitted to renew the research on Early Medieval period. Archaeologist of the French national institute INRAP have unearthed a lot of original data and totally changed our incomplete vision. Most of the sites seem to be built the same way and one type of structure is often documented as a small building: the sunken hut. It happens to occur more often in rural settlements from the 5th to the 12th Centuries. By the light of further studies in geoarchaeology, it has been possible to demonstrate that the fillings of excavated huts, which appear to be homogeneous, are much more complex in thin sections of soils. Micromorphological studies are considered by sampling in vertical and horizontal sequences. Thus science of micro-layers has renewed our often simplistic vision of the activities settled in these sunken buildings. The archaeological sites of Champagne are therefore very representative of the informative potential of the fillings of these archaeological structures. These sites are settled most likely in wet areas where ancient rivers used to be active almost one part of the year. The substratum, locally called ‘graveluche’, is made of calcareous gravels from the decomposition of chalky material all over the region of Champagne. The infillings are composed of pedofeatures due to the proximity of water. It is possible to examine more closely the construction methods suitable for this particular environment. Indeed, it is often filled with thin collapsed pieces of building material and specific fitting can be noticed. Although biological activity is frequently responsible for the dislocation of sediments in the sequences, it is possible to make a good characterization of some anthropic features. The arrangement of these elements, added to a pedologic analysis of soils, gives information on the past activities practiced in
these archaeological structures. Nowadays the archaeologists of the INRAP tend to lead intra-site geoarchaeological approaches. Micromorphology of fillings is a precious method for a better understanding of medieval huts. Theses case studies aim to reassert the importance of interdisciplinary research from landscape to micro-features on the archaeological field. This will improve our understanding of such structures called 'simple' in order to reconsider the necessities related to the establishment of past societies.

Evaluating the Nature and Behavioral Implications of Laterally Extensive Occupation Deposits in the Middle Stone Age Levels of Blombos Cave, South Africa

Magnus M. Haaland 1, Christopher E. Miller 1,2, Karen van Niekerk 1, Ole F. Unhammer 1, Bertrand Ligouis 3, Christopher S. Henshilwood 1,4

1 Department of Archaeology, History, Cultural Studies and Religion, University of Bergen, Norway
2 Institute for Archaeological Sciences, University of Tübingen, Germany
3 Senckenberg Center for Human Evolution and Paleoenvironment, University of Tübingen, Germany
4 Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg, South Africa
5 Laboratory for Applied Organic Petrology (LAOP) – Institute for Archaeological Sciences, University of Tübingen, Germany

The spatial patterning of archaeological remains has been studied at several southern African Middle Stone Age (MSA) sites, yet intra-site activity patterns for this time period are not well understood, and the spatial configuration of prehistoric MSA hunter-gatherer camp sites remains largely elusive. There are several reasons for this. First, relatively few MSA sites have been excavated, and fewer still have been excavated over a large enough surface area that allow for behaviourally meaningful intra-site spatial analyses. Second, some MSA contexts simply do not contain laterally extensive, continuous and undisturbed occupation deposits and their general lack of spatial and stratigraphic integrity make them unsuitable for conventional archaeological site structure analysis. Third, many MSA sites are located in caves and rockshelters where the recurrent use of the same confined space, by multiple depositional agents over time, have led to the formation of complex deposits that contain a combination of in-situ, partially in-situ, and completely reworked deposits. These complex, often laminated deposits can contain a high-resolution record of individual occupational events. However, the thin, finely laminated nature of the sediments makes it difficult to recover information on lateral spatial patterning using standard excavation techniques. In this study, we aim to identify and characterize intra-site spatial activity patterns through site-wide micromorphological microlayers analysis at the MSA site of Blombos Cave (BBC), South Africa. At this cave site, more than 18 m² of the interior has been excavated, and the sedimentary sequence – which is more than 3 m deep – contains numerous lenses and micro-contexts, many of which are laterally extensive and can be associated with different phases of prehistoric human occupation. We focus on micromorphological samples collected from four different MSA occupation phases at the site: M1 (Still Bay, c. 72 ka), M2 Upper (Still Bay, c. 77 ka), M3 Upper (85 ka) and M3 Lower (101 ka). By combining micromorphology, microspectroscopy and organic petrology with high-resolution site documentation our objective is to study the lateral and vertical variability of anthropogenic microlayers, in particular in terms of their genetic interpretation (behavioral implications), temporal and spatial resolution (chronological implications) and intra-site spatial distribution (implications for prehistoric site use and organization of cave space).

From Shipwrecks to Sphagnum - Geoarchaeology in the Marine Zone

Christin Heamagi

Maritime Archaeology Ltd, Southampton, UK

This paper will explore the challenges and advantages of undertaking development led geoarchaeology in the marine zone by using results derived from wind farm developments around the UK coasts. Over the last few years a notable change has occurred in the attitude towards marine geoarchaeology in the development led offshore archaeological field in the UK. Thanks to support from Historic England and an increased understanding of taking a staged approach, developers have, if sometimes reluctantly, started to understand why geoarchaeological analysis and assessment must take place and how the information contributes to the wider research framework. The research potential for microfossils, such as the ubiquitous Sphagnum and other environmental indicators from the North Sea is very high. Studies such as the North Sea Palaeolandscape Project (University of Birmingham, 2011) and Vince Gaffney’s
Mapping Lost Worlds are providing good background knowledge across large areas. In contrast to the broad approach of the research projects, development led archaeology is mostly tied to the cores and material collected by developers for their own purposes which are often from a relative defined area and tend to avoid the soft fine sediments with the highest preservation potential. Therefore, we as geoarchaeologists must find the best way forward in utilising the information we can gather from the geotechnical core material while encouraging more comprehensive geoarchaeological assessments and analysis to take place. This presentation will summarise the current status of offshore marine geoarchaeology in the UK by focusing on a number of case studies where wind farm developers have not only protected the more visible shipwrecks within their development area but also supported the study of less obvious indicators of submerged landscapes and environmental indicators preserved below their wind turbines.

Manuring Practices in the Danish Late Bronze and Early Iron Age: Geoarchaeological Investigations of Three Celtic Field Systems from Eastern Jutland, Denmark

Nina Helt Nielsen1, Søren Munch Kristiansen2 & Mette Løvschal3

1 Museum Silkeborg, Denmark
2 Department of Geoscience, Aarhus University, Denmark
3 Department of Archaeology, Aarhus University, Denmark

Indications of manure are often found at the so-called ‘Celtic fields’ that were used throughout large parts of north-western Europe in the Late Bronze and Early Iron Age. Manuring may well have been an important aspect of arable cultivation in this period, and in addition to having influenced the organization of daily life, it may have been related to a change towards more permanent rights to the individually enclosed fields. Although recent investigations have significantly improved our knowledge of the type of manure used at specific sites, less attention has been given to the fact that manuring strategies may have varied between regions according to aspects such as soil conditions, available resources and cultural traditions. In 2016, new targeted fieldwork was therefore carried out at three Celtic fields situated in Eastern Jutland: Hjortsballe, Silkeborg Vesterskov and Boes Skov. The investigations had two overall objectives: 1) to determine the manuring practices and possible variations between and within the investigated sites, and 2) to date the accumulation of earthen banks and lynchets separating the individual fields. At each site, a trench was dug through a field boundary and the adjacent fields, and samples were taken for OSL and 14C dating, pollen, thin section analysis, and geochemistry (including multi-element analyses by ICP-MS and analysis of iodine). Furthermore, in order to determine the intra-site variation of the manuring practices, additional randomized samples of the topsoil in selected fields were collected and subjected to geochemical analyses. In this paper, the results and archaeological interpretations as well as the methodological approach will be presented and discussed with reference to previous geoarchaeological investigations of Celtic fields.

Geoarchaeology and Landscape History at the Squirrel Hill Archaeological Site, USA

Lara Homsey-Messer and William J. Chadwick

Department of Anthropology, Indiana University of Pennsylvania, USA

The Squirrel Hill archaeological site (36Wm0035) is a Johnston-phase Monongahela village located in Westmoreland County, Pennsylvania (USA), on a terrace of the Conemaugh River near the modern town of New Florence. Although the site is listed in the National Register of Historic Places, previous investigation is extremely limited; many questions remain to be answered, including verifying occupation and cultural affiliations; identifying the location and extent of site boundaries; characterizing the internal arrangement of houses, plaza, and stockades; and reconstructing the site’s paleo-landscape. In partnership with the Midwest office of the Archaeological Conservancy, we began to investigate these questions as part of the Indiana University of Pennsylvania’s 2016 Archaeological Field School using a combination of geophysical survey, test excavation, and geomorphic testing. Preliminary results of a ground penetrating radar survey in the northwest portion of the site revealed what may be a large rectangular structure at 23-46 cmbs, with a size and shape that does not conform to the typical circular Johnston-phase “petal structure” house. Auger cores taken from the northern end of the site revealed what appear to be a series of buried landscapes at depths of ~108, ~130, and ~163 cmbs, suggesting that earlier occupations at the site may exist. Interestingly, these buried horizons do not appear in cores taken from the southern end of the site. Cores along the eastern edge of the site revealed alternating flood and gleyed deposits, suggesting and that the paleo-environment was more dynamic than researchers have previously thought. This paper will
report on these field results, as well as recent radiocarbon, particle size and soil micromorphology analyses designed to refine the nature of occupation and past landscape history for the site.

Erosion of Archaeological Sites: Quantifying the Threat Using OSL and Fall-Out Isotopes

Dirk Johannes (Hans) Huisman\(^1\), Jan-Willem de Kort\(^3\), Mike Ketterer\(^2\), Tony Reimann\(^3\), Jeroen Schoori\(^3\), Menno van der Heiden\(^3\), Maud van Soest\(^3\), Fenny van Egmond\(^5\), Jacob Wallinga\(^3\)

\(^1\) Cultural Heritage Agency of the Netherlands
\(^2\) Metropolitan State University of Denver
\(^3\) Wageningen University & Research
\(^4\) Loughborough University, UK
\(^5\) MEDUSA Explorations BV, Groningen

Archaeological sites with surface topography or on slopes can be susceptible to different types of erosion, resulting in progressing damage to the site. Tillage increases this threat because of the stronger susceptibility to water erosion of barren, loose topsoil after ploughing but also due to direct soil displacement by agricultural implements. Although there is ample visible evidence erosion has damaged many sites, there is little or no data to assess rates of soil redistribution (e.g. in mm/yr). This makes it hard to determine scale and urgency of the threat of erosion.

Numerous techniques are available to measure soil erosion rates, each with its own pros and cons. Few of them, however, have been tested or used on the short timescales (years or decades) needed to assess erosion rates on archaeological sites. We selected three archaeological sites (Neolithic, Roman, Medieval) where erosion rates were expected to be high (ploughed loess slopes and artificial mound). We combined OSL-SAR dating and the distribution of fall-out isotopes to assess erosion rates. A schematic depth-age representation of OSL-SAR single aliquot ages was developed that was found well suitable to determine past erosion and colluviation, but also to identify stable land surfaces on timescales of centuries and longer. Radioactive fall-out isotopes of cesium (Cs) and plutonium (Pu) were suitable for shorter time-scales: Pu isotope ratios and a positive Pu-Cs correlation showed that these isotopes were derived from the atmospheric nuclear tests of the late 1950s and early 1960s. The distribution of these isotopes in soil profiles could be used to estimate that erosion rates in the last c. 50 years; ranged from 2 - 6 mm/year on these sites.

Geoarchaeological Approaches to the Palaeolithic Surface Record: Unravelling Early and Middle Stone Age Activity at Wadi Dabsa, SW Saudi Arabia

Robyn Inglis\(^1\), Anthony Sinclair\(^2\), Abdullah Alsharekh\(^3\), Patricia Fanning\(^4\), Dan Barford\(^5\), Abigail Stone\(^6\) and Geoff Bailey\(^1\)

Micheal Chang \(^4\)

\(^1\) Department of Archaeology, University of York, UK
\(^2\) Department of Archaeology, Classics and Egyptology, University of Liverpool, UK
\(^3\) Department of Archaeology, King Saud University, Riyadh, Kingdom of Saudi Arabia
\(^4\) Department of Environmental Sciences, Macquarie University, Australia
\(^5\) Scottish Universities Environmental Research Centre, East Kilbride, UK
\(^6\) School of Earth and Environmental Sciences, University of Manchester, UK

The Palaeolithic record of the Saharo-Arabian belt occupies a key position in debates surrounding the dispersal of hominin populations from Africa, and the majority of artefacts are distributed across the surface of present-day landscapes. Whilst archaeological work has focussed mainly on the location of stratified, dateable artefacts, the surface record poses its own set of unique challenges and opportunities for Palaeolithic archaeologists that are, in the main, bound up in the geoarchaeological context of these artefacts. The SURFACE project examines the Palaeolithic record of SW Saudi Arabia through a geoarchaeological lens. Utilising remote sensing, geomorphological and archaeological survey, it employs an interdisciplinary approach to the region’s important but under-researched Palaeolithic record, the landscape it is situated within, and its implications for our interpretations of hominin activity in these landscapes. The locality of Wadi Dabsa, SW Saudi Arabia, has yielded >2000 Early and Middle Stone Age lithic artefacts recovered from the surface of tufa deposits in a basin headwaters. The richest recorded Palaeolithic site in SW Saudi Arabia, it has a major potential to inform on early hominin activity in its environmental setting. Multi-scalar geoarchaeological investigations were undertaken at the site in early 2017: remote sensing and geomorphological survey to develop a landscape stratigraphy and map surface sediment
Tracking Prehistoric Pastoralism in Subalpine and Alpine Soils –Preliminary Results of the Montafon and the Silvretta Alps (Austria/ Switzerland)

Katja Kothieringer1, Astrid Röpke2, Thomas Reitmaier3, and Rüdiger Krause4

1 University of Bamberg, Germany
2 University of Cologne, Germany
3 Archaeological Service of the Canton of Grisons, Switzerland
4 Goethe University, Frankfurt, Germany

Subalpine and alpine soils in high mountainous regions of the Alps have been influenced by pastoral activity for thousands of years. Building on previous palaeoecological, geoarchaeological and archaeological investigations in the Montafon (Austria) and the adjacent Silvretta Alps (Austria, Switzerland), we assume increasing pastoral activity during the Bronze Age. Total phosphate content was measured in subalpine (~1300 -2300 m a.s.l) soils in order to receive more knowledge about past grazing intensity at different altitudes. We mostly selected soils which have been radiocarbon dated by charcoal, if possible charcoal layers. So far, our results suggest that the uppermost topsoil clearly reflects recent pasture activity. Abandoned or less-used pasture areas have lower phosphate values. In the subalpine region of Val Urschai (Silvretta), a mesolithic soil profile at the steepleft flank of the valley, which nowadays is barely used for grazing, shows rather low phosphate concentrations; however, the values indicate past grazing of wild animals or livestock. According to our radiocarbon dates, we also have evidence of increased phosphate concentrations in Bronze Age colluvial layers at Bartholomäberg, and maximum phosphate values have been measured in a Bronze Age enclosure in Las Gondas (Silvretta). Additionally, high phosphate concentrations in different colluvial layers at Schafberg, Gargellen (Montafon) can be interpreted as long-term grazing pressure. Beside tracking former pastoral activity, phosphate concentrations seem to be a suitable parameter to identify palaeosurfaces (fossil A-horizons) and thus help to reconstruct past and present soil formation processes. Measurements of phosphate in alpine soils above 2300 m a.s.l are still pending, first results of which will be presented at the conference.

Approaching Landscape Transformations Through Urban Micromorphology at Bronze Age Palaikastro, Crete

Rachel Kulick

Department of Art, University of Toronto, Canada

At Bronze Age Palaikastro, Crete, archaeological sequences are defined by destructive events, which provide snapshots of cultural material in a particular time and space. Evidence for occupational phases is mainly based on materials found above floors/surfaces, while evidence for transitional phases is largely based on the accumulation of sediments and debris between floors/surfaces. Micromorphological evidence can correspond to both occupational and transitional phases and assist in determining the extent to which landscape transformations affected the urban site during particular phases. Two general microfabric groups are observable in the Palaikastro sediment thin sections: (1) more rounded, sorted sediment grains deposited gradually by coastal/river flooding or aeolian processes, and (2) coarser, unsorted sediment grains deposited rapidly by slope processes. Moreover, these two microfabric groups may be correlated with occupational and transitional phases, respectively. Group 1 tends to be found immediately beneath larger debris sequences and may be related to periods of gradual accumulation (and more stable slope conditions) that coincided with active use of the new site area and/or initial abandonment. Group 2 tends to be found after episodes of gradual accumulation and is representative of periods of rapid sediment accumulation, which indicate slope instability, and which coincided with gaps in active occupation and/or prolonged abandonment. While the causal factors of the gaps in occupation phases and intervening transitional phases cannot at this time be attributed to particular socio-natural pressures, based on this micromorphological study, one may conclude that periods of slow sediment accumulation may have preceded gaps in occupation phases. At the newly excavated area of Bronze Age Palaikastro, it appears that significant, slope-derived
Depositional episodes occurred immediately after MM I-II, MM III-LM IA (possibly with a first debris flow phase occurring post-MM IIIIB), during/at the end of LM IB, and at the end of LM IIII occupations.

Breathing New Life into Archaeological Soils

Carol Lang and Daryl Stump

Department of Archaeology, University of York, UK

Soils are essential for achieving food security as FAO indicates they sustain 95% of the world’s food production, additionally they have the potential to help mitigate negative impacts from climate change through the capture/retention of carbon as root stock. The management of soils/sediments and water across a landscape can be the most crucial factor for increasing its agricultural potential particularly in semi-arid areas, where water stress can occur. Worldwide irrigated agriculture accounts for 20% of the cultivated land and 40% of the global food production, with Sub-Saharan Africa having the greatest potential, according to the FAO, to increase food production, ultimately providing increased food security for areas in East Africa that are suffering from the effects of acute population growth. The identification of past soil and water management systems and the reclamation of soils that were once believed to have been abandoned due to mismanagement and ecological failure can help to reduce soil degradation; estimated to be 33% of agricultural land, globally. Over the past three years the AAREA project (Archaeology of Agricultural Resilience in Eastern Africa) has focused its attention on the abandoned agricultural landscape of Engaruka, NE Tanzania. This paper focuses on modern agricultural utilizations of the archaeological sediments and their reclamation from what was believed to be a degraded state. Furthermore, challenging assumptions that the highly visible irrigated landscape, which was employed to mitigate water run-off and prevent soil erosion, was not abandoned solely from climatic change and ecological failure. By applying geoarchaeological techniques, new evidence has been obtained that indicates geochemical composition and structure of the soil/sediment across the abandoned site are still viable agriculturally. Evidence will be presented that point to reclamation of the agricultural soils over a short period of time using local land-management skills, thus returning the abandoned land into sustainable agricultural production.

The Prospects for Geoarchaeological Interpretations of Medieval Dwelling Floors; Case Studies from Czech Republic

Lenka Lisá¹, Marek Peška², Aleš Bajer¹, Pavel Lisý¹

¹Institute of Geology CAS, Prague, Czech Republic
²Archaia Brno, o.p.s., Czech Republic
³Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic

The beginnings of Medieval towns in Central Europe (13th Century) are known just from archaeological excavations, therefore the demarcation of the medieval burger’s plots is the main interest of urban archaeology. One of the discussed issues in medieval archaeology is recognition of differences between dwelling houses and farming-out buildings. Their type of construction, type of used construction material as well as floor plans are quite similar. One of the possibilities how to study differences between those two types of dwellings is to study their infillings. The basic methodological tools we suggest are micromorphology, geochemistry and phytolith analyses. There were macro and microscopically described laminated deposits within Medieval Age objects of different age and usage in the Centre of Brno. The sites are located at the edge of the old Brno Centre near town walls (Bašty) as well as in the very centre (Panenská street). The interpretation of the oldest object is farming house with preserved stabling (but not visible as a stabling in macro). According to the micromorphological study there was identified the composition of floor layers and using phytolith analyses was interpreted the composition of stabling. Grass and straw was used for bedding. Using micromorphology we can be sure that phytoliths found there are from stabling not from excrements. The interpretation of younger object is dwelling house with preserved deposits originated during daily use of house. Trampling was documented there. The material similar to the stabling was recognized also in deep hole nearby (working pit?, storage pit?, waste pit?). Upper part of the laminated infilling recorded in this pit was burned. The interpretation of this finding might be connected with the maintenance of the storage pit. The lamination documented in the infill of the storage rooms was interpreted as a relict of the floors covered by remediation loess layers.
Where are the Mudbricks? A Geoarchaeological Analysis of Minoan Earthen Architecture

Marta Lorenzon

School of History, Classics and Archaeology, University of Edinburgh, UK

The aim of this paper is to investigate earthen architecture as part of material culture focusing on the geoarchaeological analysis of selected samples from three Bronze Age sites in Crete. This research focuses on understanding the reasons of specific variation in construction techniques and manufacturing practices, raw source material selection and usage through the combined datasets obtained from XRF, XRD, FTIR and thin-section petrography. Specifically multivariate statistical analyses are performed to determine patterns of raw source collection over time and across the island, while technological choices are investigated through the use of petrography and archaeobotanical identification. The datasets indicate the presence of a precise labour organization behind earthen construction strategies in Bronze Age Crete. The main aim of this paper is to advance the theory of sediments as an important part of material culture and sheds light on earthen production process of an area which has not been fully investigated before. Finally the research highlights patterns in raw source materials procurement, construction and manufacturing practices, which have been largely impacted by the socio-political development of Bronze Age Crete.

Keynote speaker Lisa Maher – TBC

Micro-Contextual Investigations of Organic Matter in the Archaeological Sedimentary Record

Carolina Mallol

Department of Geography and History, University of La Laguna, Campus de Guajara, La Laguna 38071, Tenerife, Spain

Instituto Universitario de Bio-orgánica Antonio González Av. Astrofísico Francisco Sánchez, 2 La Laguna 38206, Tenerife, Spain

Here, I provide an overview of the work carried out at the Archaeological Micromorphology and Biomarker Research Lab, Tenerife, Spain. Archaeologists are implementing an increasingly wide range of high resolution geoarchaeological techniques in search of new sources of behavioural information and most of these sources are inorganic (i.e., mineral). Although in recent years there has been considerable advance in applied organic geochemistry research, there is still a considerable gap between the organic and inorganic domains of geoscience. In an attempt to bridge this gap and enrich the archaeological and paleoenvironmental records from different time periods, our research team is currently carrying out interdisciplinary investigations of archaeological sediment from different sites through a microcontextual approach that integrates soil micromorphology, spectroscopy and biomarker research. Context lies at the core of our approach, as any potential clues about food items, clothing, bedding, fuel and the natural vegetation associated with past human groups that might be concealed in the sedimentary record can only be understood within its microstratigraphic spatial and temporary framework. One of our current projects focuses on archaeological charred matter, which has a high preservation potential and is common in archaeological sedimentary deposits and combustion features. We are exploring the thermal degradation pathways of different plants and animals to identify critical stages of biomarker loss and the formation of combustion-related biomarkers or pyro-biomarkers, as well as characterizing their micromorphological counterparts. In parallel, we are exploring Palaeolithic contexts to characterize microscopic charred particles and assess the preservation potential of biomarkers in very old charred matter from different sedimentary environments.

Developing High-Resolution Theoretically-Informed Geoarchaeology: Interdisciplinary Approaches to Changing Human-Fire Relations in Early Agricultural Environments and Communities

Wendy Matthews
The aim in this paper is to evaluate ways in which high-resolution theoretically-informed approaches can be applied in analysis of multi-scalar geoarchaeological data sets to explore the interconnectedness between environment and human ecology, technology and social roles and relations. As a case-study, this paper examines theories and approaches in investigation of the inter-relationships between fire ecology, fuel-selection, and the socio-economic context and specific uses of fire. Theories and approaches are drawn from ecology, anthropology, material studies and archaeology. The analytical techniques reviewed and applied include micro-charcoal analyses, micromorphology, biomolecular analyses by GC-MS and FTIR. The geoarchaeological data sets examined are drawn from landscapes and built environments that inform on one of the most significant step-changes in human lifeways and interrelations with environment and other species – the transition from mobile hunting-gathering to more sedentary agriculture in a key heartland of change, the Zagros region of Iraq and Iran, c. 12,000-8,000 BP. In the review and case-studies multiple links are investigated between human fire-use and environment, ecology, energy use, technology, the built environment, health, social roles and relations, cultural practices and catastrophic events. From the selected examples presented, it is evident that a wide range of ecological and social theories and analytical techniques are applicable in geoarchaeology and can be combined to develop interdisciplinary enquiries that encourage analysis of the multifaceted, multi-scalar and inter-related aspects and human-environment inter-relations and in this case, the impacts of fire and thus bring us closer to robust consideration of alternate hypotheses and interpretations. The interdisciplinary analytical techniques reviewed enable identification of diverse fire-affected plant, dung, micro-artefactual and architectural materials, and high-resolution analysis of their precise associations and taphonomy, crucial to interpretation of the context, history and impact of fire and the specific linkages, couplings and interrelations between humans, environment and other species.

Artefact Preservation in Saturated, Tropical Cave Sediments: Constraining Site Formation Processes in the Humid Tropics Through Experimental Reconstruction of Sedimentary Palaeoenvironments

Conor McAdams¹, Richard “Bert” Roberts¹, Mike W. Morley¹

¹Centre for Archaeological Science, University of Wollongong, Australia

Archaeological site formation processes active in the Pleistocene caves of the humid tropics are currently poorly resolved. This uncertainty impacts archaeological understandings of settlement patterns, subsistence strategies and hominin interactions in Southeast Asia, a region increasingly at the forefront of Palaeolithic research. Sedimentary environments inside caves have been a focus of geoarchaeological research in temperate latitudes, but our current understanding of post-depositional alteration of archaeological material within these environments is based largely on field observations. Post-depositional changes are often claimed to be accelerated by tropical climates, but these claims are difficult to relate conclusively to observed sedimentary features. To generate much-needed reference data and bolster our understanding of diagenetic processes in tropical regions, we are conducting experiments that involve the construction of stratigraphic sequences as analogues for sedimentary palaeoenvironments in tropical caves. A basal layer of sand provides a surface upon which archaeological material is distributed, representing a typical occupation deposit associated with modern humans. Each stratigraphic sequence has two, virtually identical sets of archaeological “artefacts.” Guano is deposited on top of this ‘cultural layer,’ and the sediments are saturated with water, simulating the anoxic, waterlogged conditions inferred from micromorphological analysis of excavated sites. Electrochemical data will be collected to characterise changing sedimentary environments, while a combination of analytical techniques, including X-ray analyses, vibrational spectroscopy and electron microscopy, will be used to observe the progression of mineralogical changes, organic taphonomic processes and element transport. Thin sections will be made to link the chemical and physical alterations affecting the excavated assemblage to visible
micromorphological features. Excavations will be carried out at regular intervals, and include control samples, to allow for comparisons of diagenetic processes through time and under different environmental conditions. In this paper we will discuss our initial experimental results, together with a discussion of their broader implications.

An Integrated Ethno-Geoarchaeological Study of Small-Scale Nomadic Herding Sites in Woodland Environments

Karen Milek¹, Alexander Oehler², Ilse Kamerling³, Loic Harrault⁴, Lorna Dawson⁵ and David Anderson⁶

¹ Department of Archaeology, Durham University
² Department of Anthropology, University of Northern British Columbia
³ Department of Geography and Environment, University of Aberdeen
⁴ Department of Archaeology, University of Aberdeen
⁵ James Hutton Institute
⁶ Department of Anthropology, University of Aberdeen

Locating and interpreting camp sites of nomadic herders and hunter-herders is exceptionally challenging, especially in wooded environments. Yet, it is precisely these types of sites that need to be located if archaeologists are to understand the complex, changing relationships between humans and other animals during the Mesolithic and Neolithic periods, when Eurasia was dominated by woodland environments. In order to improve knowledge of probable site locations, site formation processes, and environmental impacts associated with small-scale animal husbandry and nomadic lifeways in forest environments, an ethnoarchaeological study integrating geoarchaeology and palynology was conducted at a site used by modern reindeer herder-hunters in the boreal forests (taiga) of Tofalaria, in the Sayan Mountains, south-central Siberia. Ethnographic research provided information on animal husbandry and hunting practices and on the topographic locations and internal spatial organisation of seasonal camp sites. Pollen and geoarchaeological analyses conducted on soil samples from a contemporary spring and autumn camp, including multi-element, magnetic susceptibility, soil micromorphology, and lipid biomarker analyses, were compared to the observed spatial organisation of human and animal activity areas to assess their effectiveness at detecting signatures for the presence of camp fires and small herds of reindeer and horses. The study highlights the fact that narrowing down the possible locations of nomadic hunter-herder camps in a wooded environment (or a formerly wooded environment) requires an intimate understanding of the needs of the animals and local environmental conditions. Once possible site locations have been identified in a particular study area, pollen and coprophilous fungal spore analysis, coupled with magnetic susceptibility and multi-element surveys, could help to identify the locations of camp sites. Finally, archaeological soil micromorphology and faecal lipid biomarker analyses of key areas identified in the magnetic susceptibility and multi-element surveys can confirm the identification of fire features and animal congregating areas. This ethno-geoarchaeological study demonstrates that an interdisciplinary approach that integrates multiple geoarchaeological and palynological techniques has the potential to locate and interpret the ephemeral camp sites of nomadic herders and hunter-herders.

Geoarchaeological Investigations of Aghitu-3, an Upper Paleolithic Cave Site in the Armenian Highlands

Christopher E. Miller¹², Andrew W. Kandel³ and Boris Gasparian⁴

¹ Institute for Archaeological Sciences, University of Tübingen, Rümelinstr. 23, 72070 Tübingen, Germany
² Senckenberg Centre for Human Evolution and Paleoenvironment, University of Tübingen, Rümelinstr. 23, 72070 Tübingen, Germany
³ The Role of Culture in Early Expansions of Humans (ROCEEH), Heidelberg Academy of Sciences and Humanities, Rümelinstr. 23, 72070 Tübingen, Germany
⁴ Institute of Archaeology and Ethnography, National Academy of Sciences, Charents St. 15, 0025 Yerevan, Armenia
Aghitu-3 is a cave site within the Vorotan drainage of southern Armenia. Recent excavations conducted by the Tübingen-Armenian Paleolithic Project (TAPP)—a collaboration between the Institute of Archaeology and Ethnography of the National Academy of Sciences of the Republic of Armenia and the Heidelberg Academy of Sciences and Humanities—have uncovered a rich record of Upper Paleolithic occupation dating between 40,000 and 24,000 cal yr BP. From a geoarchaeological perspective, Aghitu-3 is exceptional because it is a rare example of an archaeological site found within a basaltic blister cave. As such, it allows us to examine formation processes and post-depositional modification outside of the more usual karstic settings. Additionally, the TAPP team has conducted a wide range of supporting studies, including microfauna, pollen, charcoal and tephra analyses, which provide an excellent picture of environmental change in Armenia during the Pleistocene. Here we present the results of a geoarchaeological study of the deposits at Aghitu-3, focusing on the results of micromorphological, FTIR and µ-FTIR analyses. In particular, we address several key aspects of the Aghitu-3 sequence: a) the natural processes of infilling of the basaltic cavity during the occupation of the site, including the deposition and redeposition of tephra; b) the evidence for the construction of hearths; and c) post-depositional modification of the deposits, in particular the formation of ice-segregation lenses. For the final aspect, we compare the results of our analysis with those of other paleoenvironmental proxies, to test the reliability of the presence of freeze-thaw structures in cave deposits in reconstructing past environmental change.

The Battersea Channel Project: Geoarchaeological Deposit Modelling as a Unifying and Dynamic Resource for Historic Environment Mitigation and Dissemination

Virgil Yendell¹, Dave Norcott²

¹ Museum of London Archaeology Service
² Wessex Archaeology, UK

The Battersea Channel, buried in part beneath the modern Nine Elms area of London, is hypothesised to be a relict Late Glacial landscape feature that formed a low-lying part of the prehistoric floodplain of the Thames. The Nine Elms redevelopment involves a £15 billion regeneration of 560 acres of central London along the South Bank from Lambeth Bridge to Chelsea Bridge, including the iconic Battersea Power Station. The large area and large number of sites under investigation has led to a rapidly increasing knowledge base (particularly in terms of deposit modelling and landscape reconstruction), albeit split between several archaeological organisations which might traditionally be seen as competitors, rather than collaborators. The number of sites being worked on simultaneously presents the risk that without rapid integration, areas of interest will be lost or not appropriately dealt with in the short time frames involved. This risk was recognised by Historic England, who consequently formed the Battersea Channel Project to attempt to bring together the key players working in the area. These organisations (predominantly MoLA, Wessex Archaeology and QUEST) are now sharing data and results freely and in real time, creating an unparalleled opportunity to develop our understanding of the landscape evolution and archaeology of a key tranche of land associated with the Thames and its palaeodrainage. As part of this talk we aim to: Present an overview of the Battersea Channel Project, the archaeological and environmental context of the Nine Elms development, and the importance of deposit modelling in guiding archaeological and geoarchaeological investigations; Present the results of deposit modelling and initial geoarchaeological works and consider how these data have advanced our understanding of the archaeology and landscape development of the Thames in the Nine Elms area; Consider how the methods and resources used to consolidate data from separate commercial unites (mainly MOLA, Wessex and Quest) can be used in the future to enable more dynamic integration of ongoing archaeological work.

A Multidisciplinary Approach and a Double Level of Validation for the Radiocarbon Dating of Lime Mortars

Pesce Giovanni L.
This contribution discusses the importance of a multidisciplinary approach to the application of the radiocarbon dating method to mortar samples, and the need of a double level of validation of the related results for a successful application of the method in archaeological and/or historic research. Application of the radiocarbon dating method to mortar samples was first suggested in the 1960s. Since then, a number of procedures have been developed to successfully apply the method. Unfortunately, despite the simplicity of principles underlying this application, all studies have highlighted drawbacks and limitations, mainly related to the sample contamination from undesirable carbonaceous substances that can alter the results of the dating work. However, recent experiences have demonstrated that it is not just the removal of these contaminants that can guarantee the success of the dating work. Beside this problem, in fact, a number of other factors can affect the usability of the results in archaeological and historic research. These are, for example, the careful evaluation of the stratification in the structure where the samples are taken, the representativeness of the sample in relation to a specific construction phase, and the understanding of the behaviour of the material (i.e. lime) before, during and after its use. To make sure that all factors influencing the successful application of the method are considered, all results should be critically analysed before their use in the archaeological and/or historic research. To be effective, such evaluation should be carried out at two levels: 1) at sample level, in which the quality of the sample is evaluated (e.g. by comparing the results of different CO$_2$ fractions), and 2) at archaeological level in which the representativeness of the sample (even though uncontaminated) should be investigated. The correct application of the laboratory procedures to an uncontaminated sample, in fact, cannot rule out possible errors during the sampling work and, similarly, an AMS results apparently fitting the archaeological record cannot be acquired without an independent evaluation of the quality of the sample. Overall, this means that to successfully apply the radiocarbon dating methods to mortar samples, a multidisciplinary approach should be used. In such approach both, field and laboratory procedures should be carefully planned and carried out, and the results should be critically evaluated at archaeological and laboratory level before their use in historic and archaeological investigations. This contribution aims to highlight details and importance of such approach by presenting a number of cases in which the radiocarbon dating method was applied to mortar samples.

Floors and Activity Surfaces of Kitchen and Tabernae in the Roman Legionary Camp of Vindonissa

Philippe Rentzel

Integrative Prehistory and Archaeological Science iPAS Basel University, Switzerland

Three rooms of a peristyle building situated in the central part of the legionary camp of Vindonissa, Switzerland (14-101 AD) were analysed in the frame of an interdisciplinary study, using archaeology, archaeobiology and geoarchaeology. The micromorphological approach focussed upon the characterisation of activity zones, the depositional facies (« trample ») and spatial use. Concerning the depositional environment and related formation processes, clear differences were observed between the studied areas: inside the officers kitchen, the stratigraphy is dominated by multiple constructed loam floors, overlain by trampled ashy deposits with evidence of food preparation activities (e.g. avian uric acids). Sedimentary accumulation within the taberna is characterised by thick charcoal rich layers, whereas the associated floor screeds are badly preserved. An abundant minerogenic fraction (sand, burnt lime) and phosphatic stainings indicate that a substantial part of the material derives most probably from dirt in the street and from adjacent outdoor areas. A smaller room with fireplace behind the taberna displays another type of sedimentation: laminated deposits prevail. They were influenced by a nearby hearth which was also used for culinary purposes. By comparing these features with other archaeological structures, questions about the source of the trampled sediments, the sedimentation rate and the depositional conditions (roofed – unroofed) are discussed.

A Microcontextual Investigation of Combustion Features to Reconstruct Site Maintenance and Occupational Phases at the Upper Paleolithic Site of Satsurblia Cave, Georgia

Mareike C. Stahlschmidt
Archaeological sediments and features, such as combustion features, are mainly produced by human activity and hold information on these activities, for example site maintenance activities. Site maintenance practices are behaviours directed at keeping a site in a state that facilitates future use. Reconstructing site maintenance practices can inform us about site use, organisation of space, duration and intensity of occupation. Intensity of occupation is used to explore changes in mobility and is commonly measured by frequency of artefacts or dates, neglecting issues of site formation and neglecting combustion feature as a further artefacts class. This study investigates site maintenance activities (reuse of hearths, rake out, dumping of ash, trampling) and their diachronic and synchronic variability at Satsurblia Cave using the microcontextual approach. Satsurblia Cave has a rich Upper Paleolithic sequence that holds a multitude of combustion features and includes human occupation prior and after the Last Glacial Maximum (LGM), a time period of harsh climatic conditions. Recent archaeological research into the LGM explores the retreat into refugia, changes in mobility and occupation intensity. This paper presents micromorphological analysis and Fourier transform infrared spectroscopy on the combustion features at Satsurblia to reconstruct changes in site maintenance activities and fire use in response to the LGM.

Allerød Landscapes in the Lowlands of NW Belgium: Palaeoenvironmental Reconstruction and Geoarchaeological Mapping Approaches

Jeroen Verhegge1,2 and Philippe Crombé1

1 Ghent University-Department of Archaeology-Research Group Prehistory, Gent, Belgium
2 Geosonda Environment nv, Gent, Belgium

Palaeosols from the Bølling and Allerød are known in the sandy lowlands of NW Belgium since the 60s. They were mainly discovered in Lateglacial (Weichsel) deflation depressions, shallow lakes and paleochannels of the Scheldt river and tributaries. More recently, the Allerød landscape evolution has received particular attention in geoarchaeological studies of Federmesser culture hunter-gatherer landscapes. Two outcropping, shallow contexts - a Lateglacial dune pond and a freshwater palaeolake - were analyzed using a multiproxy palaeoecological analysis. These studies revealed a vegetational evolution from a tundra landscape during the Bølling (when the lake/pond was formed) and Older Dryas, over an open birch woodland during the Early and Middle Allerød and finally into a boreal pine forest during the Late Allerød. Three short climatic oscillations (GI-1d; GI-1c2 and GI-1b) were characterized by a colder, dryer setting and a temporary return to a shrub-tundra. Particularly the Early Allerød (GI-1c2) oscillation seems to have triggered more aeolian activity than the Older Dryas, leading to the further development of attractive settlement locations on sand ridges. Starting from these insights, Lateglacial palaeosols were mapped over extensive surfaces to find potentially sealed, well-preserved settlement locations of Federmesser culture hunter-gatherers. These sites could give insights into human responses to these rapid environmental changes. Thin peaty palaeosols could be correlated to a small peak in the Friction number of published Cone Penetration Tests. Several such peaks, separated by sandy sediments, were also observed at a new site between 6-8 m below the present surface of the embanked estuarine floodplain of the Scheldt river and lead to further CPT advances. Radiocarbon dates on terrestrial organic remains recovered from these palaeosols revealed the GI-1a, GI-1c1, and GI-1c3 of the Allerød. Thus, this deeply buried sequence provides palaeoenvironmental evidence lacking in the shallow archives, which end before the onset of the GI-1a.

Phytolith Analysis on thin Sections of Urban Dark Earth in Brussels. A State of the Art

Luc Vrydaghs1, Jean-Louis Slachmuylders2, Terry B. Ball3 and Yannick Devos1

1Centre de Recherches en Archéologie et Patrimoine, Université Libre de Bruxelles, Belgium,
2Research Team in Archaeo- and Palaeosciences, Belgium
3Brigham Young University, Provo, UT 84602 USA

Phytoliths are plant microfossils that, due to their formation process, differ markedly from any other plant remains. Their incorporation within archaeological deposits relies on specific taphonomical processes. The common practice for studying phytoliths in soils is to take bulk soil samples with a trowel and to put them in a plastic bag. In the laboratory, the samples are subsequently put in various solutions and vigorously stirred. This
results in phytoliths deriving from different taxa and/or plant parts, each with potentially different taphonomical histories, being mixed together. As soil thin sections allow researchers to document specific taphonomical processes, integrating phytolith analysis and soil micromorphology has the potential to be a valuable alternative to these disruptive extraction methods. Accordingly, if researchers hope to use phytoliths to reconstruct accurate local and regional vegetation histories for a site, such an integration to establish the depositional histories of the phytoliths is a useful and perhaps critical step. By focussing on medieval and post-medieval urban contexts from Brussels, this presentation will discuss the contribution of such an integrated approach by addressing two issues: the distribution patterns of phytoliths observed within soil matrices; does such analysis provide statistically valid data for archaeoenvironmental reconstruction?

Patterns of Flint Raw Material Procurement and Use in the Late Neolithic Through Early Bronze Age at Ein Zippori, Israel

Lucy Wilson¹, Aviad Agam² and Avi Gopher²

¹ Department of Biological Sciences, University of New Brunswick in Saint John, Canada
² Department of Archaeology and Ancient Near Eastern Cultures, Tel Aviv University, Israel.

For the Neolithic period in the Levant, many studies have looked at the typology and technology of flint tools, as well as use-wear traces. However, little has been written about the raw materials themselves, nor about their geologic sources. During the Neolithic, and into the Bronze Age, dramatic changes in subsistence, site form and size and social structure occurred. These resulted, among other outcomes, in an increase in territoriality. Since territoriality directly relates to the exploitation of flint sources, lithic raw material studies can uncover patterns of land use, territorial ownership and social structure. We address this issue through the petrographic analysis of the lithic assemblages of the Neolithic to Early Bronze Age site of Ein Zippori, Israel. Using visual identifications and some thin-section analysis, we compare samples from the assemblages to geologic samples collected in the region of the site, in order to identify the types of flint used, their geologic sources, and the overall proportions of use of the types. Ein Zippori is located at an abundant source of flint, which was abundantly used, but the assemblages also contain flint from more distant sources, and there are differences in use of raw materials by tool type and through time, which indicate some selectivity in flint choices, even for flint from local sources. In addition, the non-local flints must have been obtained through a separate mechanism or mechanisms, such as trade, direct procurement, or through embedded procurement during other activities. Altogether, these results suggest that factors more complex than simple availability influenced the formation of the lithic assemblages at Ein Zippori.

Keynote speaker Jaimie Woodward – TBC

An Integrated Micromorphological and Phytolith Study of Urban Dark Earths from Atuatuca Tungrorum (Tongeren, Belgium)

Barbora Wouters¹, Yannick Devos², Luc Vrydaghs³, Natasja De Winter⁴, Patrick Reygel⁴

¹Vrije Universiteit Brussels & University of Aberdeen
²CReA-Patrimoine, Université Libre de Bruxelles
³Roots, Research Team in Archaeo-and Palaeosciences
⁴ARON bvba

Tongeren (Atuatuca Tungrorum) is the only Roman administrative capital within the borders of present-day Belgium. It developed in the first century AD and became an important civitas. Here, as in many European towns, the transition between the archaeological strata of Roman date and those of the High Medieval Period remains poorly documented. Many excavations in the centre of town have uncovered dark earths dating to Roman as well as early medieval times. These are typically thick, dark coloured, homogeneous deposits covering large surfaces. A large-scale excavation at Vermeulenstraat (phase 4, 2014) is the first occasion where dark earths from this town were sampled for micromorphological study and phytolith analysis in thin section. Three separate dark earths spanning the Early to Late Roman Period were analysed. The results indicate a range of different activities, such as
cultivation, house preparation layers, waste dumping, uncovered surfaces and gardening, and their different formation histories illustrate the evolution of the area. While micromorphology has become an established method in the study of urban dark earths, its integration with phytolith studies is rare in this field. Especially in contexts where other botanical remains (pollen, plant macro-remains) are poorly preserved, as is the case in Tongeren, the study of phytoliths in thin section is a valuable tool to identify plant remains in archaeological deposits. Its integration within a micromorphological study improves our understanding of their taphonomy and function.

POSTER ABSTRACTS WILL BE AVAILABLE IN THE FINAL PROGRAMME