

Predicting neurosurgical outcomes in focal epilepsy patients using computational modelling

Nishant Sinha,

Justin Dauwels, Marcus Kaiser, Sydney Cash, M. Brandon Westover, Yujiang Wang, Peter N. Taylor

e-mail: n.sinha2@newcastle.ac.uk

- Epilepsy is a neurological disorder characterised by recurrent unprovoked seizures.
- Approx. 50 million people have epilepsy worldwide.
- For around 30% cases, seizures become intractable i.e. poorly controlled by the anti epileptic drugs.

Focal epilepsy

- Seizure onset can be localised to a particular brain region.
- Surgery is a viable option to control intractable focal onset seizures.

https://www.youtube.com/watch?v=wV6eclai42Q

Main objectives in pre-surgical evaluation

- Accurate delineation of seizure onset and propagation area.
- Avoiding eloquent cortex i.e. crucial brain tissues (like language, motor)
- Often, among other brain imaging methods, electrodes are placed directly on the cortical surface for precise mapping of resection site.

In a typical clinical setup,

- Seizure markers are determined by visual inspection
- Multiple seizures are allowed to occur for precise mapping
- Prolonged invasive recording, up to 7 to 10 days in some patients.

Seizure reoccurs after surgery

- Success rate in temporal lobe epilepsy approx. 60%.
- Epileptogenic lesion (dysplasia, hippocampal sclerosis) success rate is high.
- Success rate of surgery is poor in
 - MRI Negative or Non-Lesional epilepsy
 - Seizure originates in the extratemporal regions

In a typical clinical setup,

- Seiz
- · Mul

Can we predict the location of epileptogenic tissues any faster/better?

- Seizure reoccurs after surgery
- Sucress rate in
- Epile

Can we predict the outcome of surgery to better inform clinicians and patients?

- •
- Seizure originates in the extratemporal regions

Method

Functional connectivity

- Compute average cross-correlation from pre-processed inter-ictal or non-seizure
 ECoG segments (1s duration, 50% overlap)
- Patient-specific functional interaction between brain areas under each electrode.

Method

Computational Model

- Non-linear differential equations that place a node in a bistable regime (Lopes da Silva et al., 2003, Epilepsia).
- Dynamics at each node can exhibit transition between the two states.

Method

Computational Model + Patient Specific Connectivity

- Consider each ECoG electrode as a node in a bistable regime and all nodes are connected by patient specific functional connectivity.
- Seizure likelihood can be estimated using escape time

Result: Predicting location of epileptogenic tissues

- Applied this technique retrospectively to patients who had focal epilepsy and underwent surgery.
- Seizure likelihood from patient connectivity incorporated in computational model.

Result: Predicting location of epileptogenic tissues

Consistent for different epochs of different duration.

Result: Predicting location of epileptogenic tissues

Consistent for different frequency bands.

