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Let’s start on Earth...

CRUST

various types of rocks

MANTLE

magnesium-iron silicate

OUTER CORE
liquid iron + nickle

INNER CORE
solid iron + nickle

CMB

(not to scale) ScienceDalily
#® core-mantle boundary (CMB): sharp boundary between the
non-conducting mantle and the conducting outer core

= dynamo action entirely confined within the outer core
#® dynamo radius r4y,: top of the dynamo region ~ repy,

® one way to deduce r¢m, from observation at the surface:
magnetic energy spectrum



Gauss coefficients ¢;,, and Ay,

#® Outside the dynamo region, r > 7qyn:

3=0

VxB=pyj=0 = B=-VU

(s

V-B=0 = VU =0
a = radius of Farth

#® Consider only internal sources,

(r,0,¢) = az Z ( )lH le (cos 0) (g cosmeo + hyyy, sinme)

=1 m=0

P Schmidt’s semi-normalised associated Legendre polynomials

® g, and hy, can be determined from magnetic field measured at
the planetary surface (r =~ a)



The Lowes spectrum

® Average magnetic energy over a spherical surface of radius r
Ep(r) = o 47rf| r,0,¢)|*sin 6 df d¢

® Inside the source-free region rqyn < r < a,

o) =3[ (5" 040 3 (1)

=1

® Lowes spectrum (magnetic energy as a function of [):

Ry(r) = ( >2l+4 i (97 + him,
m=0

214+4
= (—) Ri(a) (downward continuation)
r



Estimate location of CMB

using the Lowes spectrum
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Spectrum at r=a

Spectrum R(a), nT®

a= Earth’s radius
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downward continuation from a to ¢y, through the mantle (5 = 0):

cmb

) +1In Rl(""cmb)

white source hypothesis: turbulence in the core leads to an even

distribution of magnetic energy across different scales [,

Ry (Temp) is independent of [

waves observations

Temb = 0.55a =~ 3486 km agrees very well with results from seismic



Interior structure of Jupiter

Hydrogen gas

Liquid metallic hydrogen

Dense core?

(NASA JPL)
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® low temperature and pressure near surface = gaseous molecular H/He

core?

e o o 0@

extremely high temperature and pressure inside = liquid metallic H

transition from molecular to metallic hydrogen is continuous

conductivity o(r) varies smoothly with radius r

At what depth does dynamo action start?



Lowes spectrum from the Juno mission
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Juno’s spacecraft reached Jupiter
on 4th July, 2016

currently in a 53-day orbit,
measuring Jupiter’s magnetic field
(and other data)

Ry(ry) up to I = 10 from latest
measurement (8 flybys)

Lowes’ radius: 7jowes =~ 0.85 7
(r;=16.9894x10"m)



Lowes spectrum from the Juno mission
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® Juno’s spacecraft reached Jupiter
on 4th July, 2016

® currently in a 53-day orbit,
measuring Jupiter’s magnetic field
(and other data)

9 R(ry) up tol =10 from latest
measurement (8 flybys)

® Lowes’ radius: 7owes =~ 0.857;
(ry=6.9894x10"m)

Questions: with the conductivity

profile o(r) varying smoothly,

® meaning of Tiowes? Tlowes = Tdyn’

® white source hypothesis valid?

® concept of “dynamo radius” rqyn
well-defined?



A numerical model of Jupiter

® spherical shell of radius ratio 7y /rous = 0.0963 (small core)

® rotating fluid with electrical conductivity o(r) driven by buoyancy
® convection forced by secular cooling of the planet
® anelastic:linearise about a hydrostatic adiabatic basic state (p, T, p, . . .)
® dimensionless numbers: Ra, Pm, Ek, Pr
V. (pu) =0
|:8—u+(u~V)u} +22 Xu:—VH,-i-i(VXB) x B — (W)Sd—T +Ek—
ot p Pr d p
%—?:VX(UXB)—VX(UVXB)
= [0S Pm _ _Pr Pm

Boundary conditions: no-slip at ri, and stress-free at rout, S(rin) = 1 and S(rout) = 0,
electrically insulating outside ri, < r < Tout. (Jones 2014)



A numerical model of Jupiter

® spherical shell of radius ratio 7y /rous = 0.0963 (small core)
® rotating fluid with electrical conductivity o(r) driven by buoyancy
® convection forced by secular cooling of the planet
#® anelastic:linearise about a hydrostatic adiabatic basic state (p, T, p, . . .
® dimensionless numbers: Ra, Pm, Ek, Pr
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Ra=2x107, Ek=15x10"°, Pm =10, Pr=0.1

T = Tout

dipolar

r = 0.7570ut

small scales

radial magnetic field, B,(r. 0. ¢)
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Where does the current start flowing?
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® average over a spherical surface of radius r

poj =V x B

1 2w T
)= o [ [ 137 sin0ass
471' 0 0

® j.ns drops quickly but smoothly in the transition region, not
clear how to define a characteristic “dynamo radius”




Magnetic energy spectrum, Fj(r)

® average magnetic energy over a spherical surface:
Ep(r) = o 47rf| r,0,¢)|*sin 6 df d¢

® Lowes spectrum: recall that if 5 = 0, we solve V2W = 0, then

00 l oo
20+4
2u0Ep(r) =Y [(T) I+1)> glm+hl2m)} => Ry(r)
= m=0 =1
® generally, for the numerical model, B ~ ), by (1) Yim (6, @),

2u0Ep(r 7{|B r,0,0)|>sinfdf dp = Z Fy(r

J(r,0,¢) =0 exactly = R;(r) = Fy(r)



Magnetic energy spectrum at different depth r
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® > 0.9r; : slope of Fj(r) decreases rapidly with r

r < 0.9ry : Fi(r) maintains the same shape and slope
= a shift in the dynamics of the system

® r>09ry: Fi(r) ~ Ry(r)

r < 0.9ry : Fi(r) deviates from R;(r)

= electric current becomes important below 0.97;

® suggests a dynamo radius rqy, ~ 0.973

Fy(r): solid lines

Ry(r): circles



Spectral slope of Fj(r) and R;(r)
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#® sharp transition in «(r) indicates rqy, = 0.907r;

® Fj(r) inside dynamo region is not exactly flat (aqyn = 0.024):
white source assumption is only approximate

® 7iowes Provides a lower bound to rayn: 8 =0 at riowes = 0.883

General picture: a(roy) and agy, control rqyn and Tiowes




Comparison with Juno data

()

normalised Lowes spectrum R;(r;)/R;(ry)
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noise in Juno data = results depend on fitting range

larger Pm gives smaller agyn, however a(rout) also becomes smaller
= rqyn remains roughly the same

Ry (ry) is shallower in the numerical model than from Juno observation

® the metallic hydrogen layer could be deeper than predicted by theoretical

calculation
the existence of a stably stratified layer below the molecular layer

K
® our numerical model has more small-scale forcing than Jupiter does



Time variation of B, at the surface

Pm=—10

full field at ¢ =0.12692 dipole field at ¢ =0.12692

® dipole is slowly varying compared to other modes
0B

® secular variation: B = —

ot

® for 5 = 0, Lowes spectrum for secular variation:

Ry(l,r) = (E>2l+4 [+1) ZI: (g?m+h%m>
m=0

T



Secular variation spectrum Fy(l,r)

ZF (1,7) |B(r,0,¢)|*sin 0 dd d¢

geomagnetic SV

Ra=2.0e+07, Pm=10, Ek=1.5¢-05, Pr=0.1, N,=192, N;=288, N,,,=216
T T T surface (Holme & Olsen 2006)
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Figure 1. Spectra of SV models at Earth’s surface.

CMB (Holme et al. 2011)
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l Figure 2. Spectra of the CHAOS-4 SV at the CMB, r = ¢. Green line gives
theoretical model, dashed lines approximate 1o error bounds.



A spectral correlation time 7;

a correlation time for different mode I:

¥
F(l,r)
n(r) =
< Fp(Lr) >t
® for j =0, 7; becomes independent of r:
I
7= < Zmzo (gl2m + thm) >
1 : ;
Zm:O (gl2m + hl2m>
® two-parameter power law (e.g. Holme & Olsen 2006):

=1sv- 177, 132<~vy<145

19y ~ a secular variation time scale
one-parameter power law (e.g. Christensen & Tilgner 2004):

=15y -1



Example of 7; in geodynamo

10° b. gufmi
- ~
=
10?
1 2 3 45 10
W
¢. dynamo (Eq.3)
<107 N
=
107

(Lhuillier et al. 2011)

T =Ty -1



Spectral correlation time 7; in Jupiter dynamo model

Ra=2.0e+07, Pm=10, Ek=1.5¢-05, Pr=0.1, N,=192, N;=288, N,,=216
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~v and 7gy in Jupiter dynamo model
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