Cranfield UNIVERSITY

Wire + Arc Additive Manufacturing: properties, cost, parts

Dr Filomeno Martina + the WAAMMat team Welding Engineering and Laser Processing Centre f.martina@cranfield.ac.uk

www.cranfield.ac.uk

- Wire + Arc Additive Manufacturing (WAAM) history
- WAAM features and systems
- Steel
- Aluminium
- Titanium
- Graded / new / multi materials
- Challenges

Cranfield UNIVERSITY

Metal AM processes

Cranfield UNIVERSITY

WAAM // History

- 1926 Baker patented "The use of an electric arc as a heat source to generate 3D objects depositing molten metal in superimposed layers"
- 1971 Ujiie (Mitsubishi) Pressure vessel fabrication using SAW, electroslag and TIG, also multiwire with different wires to give functionally graded walls
- 1983 Kussmaul used Shape Welding to manufacture high quality large nuclear structural steel (20MnMoNi5 5) parts – deposition rate 80kg/hr – total weight 79 tonnes

Cranfield UNIVERSITY

WAAM // History

- 1993 Prinz and Weiss patent combined weld material build up with CNC milling
 → Shape Deposition Manufacturing (SDM)
- 1994-99 Cranfield University develop Shaped Metal Deposition (SMD) for Rolls Royce for engine casings, various processes and materials were assessed – still in production

WAAM at Cranfield // History

2006 Airframe companies talk to Cranfield about high deposition rate for titanium parts

Crar

• Target is metre scale parts of relatively simple geometries

- The process is aimed at replacing unsustainable machining from billet or forgings:
 - projected requirement for Ti in aircraft over the next 20 years is 18 million tonnes
 - Average buy-to-fly ratio for airframes is 5
 - meaning **15 million tonnes** would be scrap or low value swarf

Cranfield

Business drivers for AM

- Reduction in **manufacturing cost**
 - Reduction in lead time
 - Reduction in material waste
- Reduction in **design constraints**
- Reduction in **complex assembly** efforts
- Increase in design flexibility
- **Distributed manufacturing** (f.i. on the Moon)
- Improvement in parts performances (f.i strength/weight, multifunctional, graded)

WAAM // Features

- Build rates 0.5 4 kg/h (titanium ~ 1 kg/h)
- Unlimited build volume
- BTF typical 1.5, always < 2
- 100% dense parts as deposited with no defects
- Specific deposition cost (dependant upon BTF):
 - **Ti:** £300/kg
 - AI: £20/kg
 - Mild steel: £25/kg
- Freedom of design? Not so much

Cranf

WAAM // Systems

Robot option

Tent + part rotator option

Gantry option Hydraulic unit Torch Spindle 5 m 3 m

Cranfield

3 Axis CNC milling system with WAAM

Open architecture systems

STEEL

Projectiles

Mass 32 kg each // Deposition rate 4 kg/h

After machining

After assembly and just before firing

Cranfield UNIVERSITY

Wind tunnel model

Bombardier landing gear rib

Manufacturing option	Mass (kg)	BTF	Cost (£k)	Cost red.
Original, machined	36	12	1.6	-
Original, WAAM	36	2.3	0.7	55%

ALUMINIUM

Cranfield UNIVERSITY

Aluminium parts

Aluminium // Deposition

Issues:

- Defect control
 - Porosity
 - Cracking
- Achieving high strength
 - Most high strength alloys are heat treatable
 - Very limited range of **binary** filler wires
 - AlCu, AlMg, AlSi

• Solutions:

- Waveform: control of bead shape and microstructure
- Wires selections
- Heat treatments
- High pressure interpass rolling

Rolling of AM parts

2319 // Effect of MIG variants on porosity

Cranfield UNIVERSITY

2319 // Effect of rolling + HT on porosity

As deposited

ST+AA

Rolled + ST + AA There is no porosity in the rolled + heat treated sample.

Aluminium // Tensile properties

Bombardier wing rib

- Material: Al4043
- **Length:** ~2.5 m
- BTF = **45**
- BTF WAAM = **12** (minimum = 2.7)
- Savings > 500 kg

Bombardier wing rib

Bombardier wing rib

Cranfield UNIVERSITY

Bombardier wing rib

15 kg aluminium wing rib (DR = 1kg/h)

Design option (MRR = 65 kg/h)	BTF	Cost (£k)	Cost red.
Machined from solid	45	4.9	-
WAAM option 1	2.9	1.7	65%
WAAM option 2	12.3	2	58%
Design option (MRR = 323 kg/h)	BTF	Cost (£k)	Cost red.
Design option (MRR = 323 kg/h) Machined from solid	BTF 45	Cost (£k) 4.4	Cost red.
Design option (MRR = 323 kg/h) Machined from solid WAAM option 1	BTF 45 2.9	Cost (£k) 4.4 1.7	Cost red. - 61%

Option 1:

Option 2:

TITANIUM

Cranfield

Ti-6AI-4V // Deposition

• Issues:

- Anisotropy
- Strength of AM parts < Strength forged/machined parts
- Residual stress / distortion

• Solution:

- High pressure interpass rolling
- Build strategy

Ti–6AI–4V // Effect of rolling on microstructure

Ti–6AI–4V // Effect of rolling on microstructure

Control

- Isotropy a
- Strength
 - Proof

Bombardier landing gear rib

Manufacturing option	Mass (kg)	BTF	Cost (£k)	Cost red.
Original, machined	20	12	16.2	-
Original, WAAM	20	2.3	5	69%

BAE Systems spar

- Demonstrates the features of a fighter-jet wing spar
- Double sided deposition
- BTF reduced to 2.2
- **40 h** manufacturing time (20 h per part)

Manufacturing option	Mass (kg)	BTF	Cost (£k)	Cost red.
Original, machined	17	6.5	7.2	-
Original, WAAM	17	2.2	5.1	29%

Graded/new/multi materials

Local alloying

Cranfield

Challenges // WAAMMAt programme, £1.6 million

Development of control system and full automation →
 Commercialisation of a platform for OEMs and Tier 1 suppliers

Cran

- In process NDT:
 - Shape
 - Porosity
 - Grain size
- Hardware development:
 - local shielding
 - process monitoring
 - fault detection
- Stress and distortion management
- **Net shape finishing** integrated machining or multiple robots:
 - Finish part within same setup
 - Correction of errors (shape, porosity)

Thanks for your attention!

 Williams, S.W., Martina, F., Addison, A.C., Ding, J., Pardal, G., and Colegrove, P., 2015. Wire + Arc Additive Manufacturing, Materials Science and Technology, in press.

Cran

www.cranfield.ac.uk

- Martina, F., 2014. Investigation of methods to manipulate geometry, microstructure and mechanical properties in titanium large scale Wire+Arc Additive Manufacturing, PhD thesis, Cranfield University.
- Colegrove, P.A., Martina, F., Roy, M.J., Szost, B., Terzi, S., Williams, S.W., Withers, P.J., Jarvis, D., 2014. *High pressure interpass rolling of Wire + Arc Additively Manufactured titanium components*. Advanced Materials Research 996, 694–700.
- Colegrove, P.A., Coules, H.E., Fairman, J., Martina, F., Kashoob, T., Mamash, H., Cozzolino, L.D., 2013. *Microstructure and residual stress improvement in wire and arc additively manufactured parts through high-pressure rolling*. Journal of Materials Processing Tech. 213, 1782–1791.
- Martina, F., Menhen, J., Williams, S.W., Colegrove, P.A., Wang, F. 2012. *Investigation of the benefits* of plasma deposition for the additive layer manufacture of Ti–6AI–4V. Journal of Materials Processing Tech. 212, 1377–1386.

Dr Filomeno Martina

Welding Engineering and Laser Processing Centre

f.martina@cranfield.ac.uk // Twitter: @wirearcam