

The Human Connectome: Linking Brain Network Features to Healthy and Pathological Information Processing

Marcus Kaiser, PhD FRSB

Professor of Neuroinformatics School of Computing Science / Institute of Neuroscience Newcastle University United Kingdom

http://www.dynamic-connectome.org

http://neuroinformatics.ncl.ac.uk/

Clinical Neuroinformatics in the UK

UK Biobank (Imaging project with 100k subjects aged 40-65)

Dementias Platform UK

Imaging platforms: FSL and SPM

nhsnetworks 🔆 National Mental Health Informatics network

UK Special Interest Groups in Neuroinformatics

SIG Neuroinformatics

https://www.bna.org.uk/members/sigs/neuroinformatics/

Experimental and Computational Researchers

SIG Human Neuroinformatics

http://neuroinformatics.org.uk/

Developers

computer models to inform diagnosis and treatment of brain disorders

SIG Computational Neurology

http://www.chain-network.org.uk/

Clinicians

Common connectome features

Brain connectivity in Drosophila melanogaster

Kaiser (2015) Current Biology

Develop computational tools to inform diagnosis and treatment of network disorders

Components

- Diagnosis for individual patients including aetiology (developmental origin) and disease subtype
- Identification of potential treatment targets
- Model for effects and side effects of treatment

Finite element headmodels

Stimulation modality model

Mechanistic model

Wang, Hutchings, Kaiser, Prog. Brain Res., 2015

Diagnosis including disease causes

Connectome topology not always sufficient as biomarker

Brains are non-linear systems: small system changes can have large effects on system behaviour

Connectome	Consequence	Classification
------------	-------------	----------------

Seizure Epilepsy

Hallucinations Schizophrenia

Seizure Epilepsy

 \rightarrow need for simulations of dynamics and development

Kaiser, Frontiers in Human Neuroscience, 2013

Understanding the factors that lead to neurodevelopmental diseases

Reduction of streamlines over time

Lim et al., Cerebral Cortex, 2015

Preferential detachment and gender differences

Preferential loss of streamlines within thick, short-distance, intra-module, and intra-hemisphere fibre tracts

Delayed removal of streamlines in males

Reason why some psychiatric diseases are more common in men?

Simulating development: From micro- to macro-connectome

Cortical layer formation

→ formation of gyri/sulci and fibre tracts

Wang et al. PNAS 2016

https://biodynamo.web.cern.ch/

Identifying treatment targets

Not necessarily the ones that show changed connectivity

changes might be a consequence of a disease rather than its cause and could even be involved in compensating for disease effects

